INSTALACIÓN CONTRA INCENDIOS.

ASIGNATURA: INSTALACIONES DE FLUIDOS

ÁNGEL CASTILLO CUEVAS
CLAUDIO TEDDE
INMACULADA MARTINEZ VIDAL
FELIPE SEGURA GUTIERREZ
ÍNDICE

1. RESUMEN NORMATIVA BÁSICA DE DISEÑO DE INSTALACIONES CONTRA INCENDIOS (PAG 5-10)

1.1 CTE... 6-9
1.2 REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN INSTALACIONES INDUSTRIALES... 9-10
1.3 REGLAMENTO DE INSTALACIONES DE PROTECCIÓN CONTRA INCENDIOS... 10

2. NIVEL DE RIESGO (PAG 11-24)

2.1 INTRODUCCIÓN.. 12-13
2.2 CÁLCULO NIVEL DE RIESGO... 13-24
 2.2.1 Planta -1.. 14-17
 2.2.2 Planta 0.. 17-18
 2.2.3 Planta 1.. 19-21
 2.2.4 Planta 2.. 21-24

3. DISTRIBUCIÓN EXTINTORES (PAG 25-30)

3.1 CRITERIOS A SEGUIR.. 26
3.2 DISTRIBUCIÓN EXTINTORES.. 26-30

4. SISTEMA DE DETECCIÓN (PAG 31-35)

4.1 IDENTIFICACIÓN NECESIDAD SISTEMA DETECCIÓN DE INCENDIOS... 32-33
4.2 INSTALACIÓN DEL SISTEMA DE DETECCIÓN AUTOMÁTICO EN EL APARCAMIENTO............................. 33-35

5. DISEÑO DE LA RED DE ROCIADORES PARA EL APARCAMIENTO (PAG 36-61)

5.1 NORMATIVA DE APLICACIÓN EN INSTALACIONES DE ROCIADORES.. 37-39
5.2 INTRODUCCIÓN.. 39-61
 5.2.1 Determinación de la clase de riesgo del local... 39
5.2.2 Densidad de diseño y área de operación ... 40
5.2.3 Distribución de lo rociadores y área de cobertura máxima 41-42
5.2.4 Calcular hidráulico ... 42-49
 5.2.4.1 Condiciones de diseño ... 42-43
 5.2.4.2 Pérdidas de carga de la instalación ... 44-47
 5.2.4.3 Cotas tuberías y accesorios .. 47
 5.2.4.4 Determinación de la zona más desfavorable 47-48
 5.2.4.5 Determinación de la bomba .. 48-49
5.2.5 Descripción de la instalación ... 49-54
 5.2.5.1 Abastecimiento de agua .. 49-50
 5.2.5.2 Puesto de control ... 50-52
 5.2.5.3 Otras válvulas y accesorios ... 52-53
 5.2.5.4 Tuberías .. 53
 5.2.5.5 Rociadores ... 53-54
5.2.6 Selección comercial de los componentes .. 54-61

6. SISTEMAS DE PROTECCION CONTRA INCENDIOS FIJOS: BOCAS DE INCENDIOS EQUIPADAS. BIES (PAG 62-101)

6.1 INTRODUCCIÓN ... 64
6.2 INTRODUCCIÓN A BIES ... 64-66
6.3 NORMATIVA ... 66-75
6.4 INSTALACIÓN (Edificio) ... 75-76
6.5 BOCAS DE INCENDIO EQUIPADAS ... 76-78
 6.5.1 Definición .. 76
 6.5.2 Partes y Características ... 76-78
6.6 DESCRIPCION DE LA INSTALACIÓN. DISEÑO Y DIMENSIONADO DE LA RED 78-85
 6.6.1 Obligatoriedad de la instalación .. 78
 6.6.2 Tipo de BIE y Condiciones de funcionamiento 78-81
 6.6.3 Red de Tuberías .. 81-84
 6.6.4 Accesorios ... 84
 6.6.5 Perdidas de carga .. 85
6.7 BASES DE CÁLCULO .. 85-92
 6.7.1 Red .. 86-88
 6.7.2 Simulaciones ... 88-92
6.8 SISTEMA DE ABASTECIMIENTO .. 92-98
1. RESUMEN NORMATIVA BÁSICA DE DISEÑO DE INSTALACIONES CONTRA INCENDIOS

1.1 CTE
1.2 REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN INSTALACIONES INDUSTRIALES
1.3 REGLAMENTO DE INSTALACIONES DE PROTECCIÓN CONTRA INCENDIOS
1.1 CTE

El Código Técnico de la Edificación (CTE) es el nuevo marco normativo que establecerá las exigencias que deben cumplir los edificios en relación con los requisitos básicos de seguridad y habitabilidad establecidos en la Ley de la Edificación (LOE).

El CTE se ordena en dos partes, ambas de carácter reglamentario. La primera contiene las disposiciones y condiciones generales (ámbito de aplicación, estructura, clasificación de usos, etc.) y las exigencias que deben cumplir los edificios para satisfacer los requisitos de seguridad y habitabilidad de la edificación.

La segunda parte está constituida por los denominados Documentos Básicos (DB), cuya adecuada utilización garantiza el cumplimiento de las exigencias básicas del CTE.

El ámbito de aplicación de este DB-SI es el que se establece con carácter general para el conjunto del CTE en su artículo 2 (Parte I) excluyendo los edificios, establecimientos y zonas de uso industrial a los que les sea de aplicación el “Reglamento de seguridad contra incendios en los establecimientos industriales”, haciendo un inciso en el ámbito de aplicación a todas las edificaciones públicas y privadas cuyos proyectos precisen disponer de la correspondiente licencia a autorización legalmente exigible, excepto las que tengan licencia de obra en el momento de la entrada en vigor (29 de septiembre de 2006) si comienzan las obras antes de tres meses.

El objetivo de las exigencias básicas de Seguridad en caso de Incendios es “reducir a límites aceptables el riesgo de que los usuarios sufran daños derivados de un incendio de origen accidental, como consecuencia de las características de su proyecto, construcción, uso y mantenimiento”.

Dentro de DB-SI hay que hacer unas puntualizaciones sobre el ámbito de aplicación:

- No incluye exigencias para limitar el riesgo de inicio de incendio.
- Se excluye los aparcamientos en espacios exteriores del entorno de los edificios, aunque estén cubiertas las plazas.
- En las obras de reforma, se aplicará a los elementos constructivos y a las instalaciones de P.C.I. modificados por dicha reforma.
- Se comprobará el cumplimiento del CTE en los cambios de uso de edificios existentes aunque no existan obras.
- La duplicación de la superficie de sectorización mediante la aplicación de sistemas de extinción automáticos.

Las exigencias básicas de seguridad en caso de incendio (SI) que constituyen este documento básico, se encuentran divididas en seis secciones que a continuación se enumeran:
1) Exigencia básica SI 1 - Propagación interior
Se limitará el riesgo de propagación del incendio por el interior del edificio. Los edificios se deben compartimentar en sectores de incendio según las condiciones que establecen en la Tabla 1.1 del DB - SI, en la que se describen los diferentes usos. En general deberán constituir sector de incendio:

- Todo establecimiento contenido en un edificio y cuyo uso sea distinto.
- Toda zona integrada en un edificio o en un establecimiento de otro uso y que este destinado a uso de vivienda, cualquiera que sea su superficie, o bien a alojamiento y cuya superficie construida exceda de 400 m2.
- Un espacio diáfragma puede constituir un único sector de incendio.
- No se establece límite de superficie para riesgo mínimo.

Los usos considerados en ésta Sección y en general en toda la redacción del CTE son los siguientes:

<table>
<thead>
<tr>
<th>- Vivienda</th>
<th>- Docente</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Administrativo</td>
<td>- Hospitalario</td>
</tr>
<tr>
<td>- Comercial</td>
<td>- Pública Concurrencia</td>
</tr>
<tr>
<td>- Residencial Público</td>
<td>- Garaje</td>
</tr>
</tbody>
</table>

2) Exigencia básica SI 2 - Propagación exterior
Se limitará el riesgo de propagación del incendio por el exterior, tanto en el edificio considerado, como a otros edificios.

Las medianerías o muros colindantes con otros edificios deben ser al menos EI 120 (RF-120).

Se presentan diferentes casos de fachada enfrentada, a 45°, 60°, 90°, 135° y 180°, con las correspondientes resistencias al fuego para cada una las partes, a efectos de garantizar la seguridad frente a la propagación exterior. En cuanto a las cubiertas se analizan las distintas soluciones en función del riesgo, siempre considerando la posibilidad de soluciones alternativas con el correspondiente cálculo justificativo que garantice la seguridad.

3) Exigencia básica SI 3 – Evacuación de ocupantes
El edificio dispondrá de los medios de evacuación adecuados para que los ocupantes puedan abandonarlo o alcanzar un lugar seguro dentro del mismo en condiciones de seguridad.

En éste capítulo se presenta el cálculo de la densidad de ocupación en forma de tabla, lo cual facilita mucho su interpretación para los distintos usos.

4) Exigencia básica SI 4 - Instalaciones de protección contra incendios
El edificio dispondrá de los equipos e instalaciones adecuados para hacer posible la detección, el control y la extinción del incendio, así como la transmisión de la alarma a los ocupantes.
Los equipos e instalaciones de PCI que con que debe contar cada edificio se presentan en una tabla en función del uso del edificio o establecimiento y sus condiciones. En un primer bloque general se exponen las condiciones de: extintores, bocas de incendio, hidrantes exteriores, sistema automático de extinción.

A partir de ésta generalidad, se detallan las condiciones de los distintos usos en que se dividen los edificios en las ocho tipologías presentes a lo largo de todo el desarrollo del CTE: vivienda, administrativo, residencial, hospitalario, docente, comercial, pública concurrencia y garaje. Tanto el diseño, la ejecución, la puesta en funcionamiento y el mantenimiento, así como los respectivos materiales y componentes de los equipos, deben cumplir con el RIPC y en el resto de reglamentación que le compete.

5) Exigencia básica SI 5 - Intervención de bomberos

Se facilitará la intervención de los equipos de rescate y de extinción de incendios.

En ésta sección se han incluido las condiciones de aproximación y entorno de los edificios así como la accesibilidad por fachadas que pasan a ser obligatorias.

6) Exigencia básica SI 6 – Resistencia al fuego de la estructura

La estructura portante mantendrá su resistencia al fuego durante el tiempo necesario para que puedan cumplirse las anteriores exigencias básicas.

En ésta sección se indican una serie de métodos simplificados de cálculo, en los cuales se consideran las acciones directas e indirectas del fuego, sobre las estructuras.

Estos métodos se presentan en una serie de anejos B, C, D, E y F. En estos métodos solo se recoge el estudio de la resistencia al fuego de los elementos estructurales individuales ante la curva de incendio normalizada.

Se presenta la tabla 3.1 del DB – SI, con la resistencia al fuego suficiente de los elementos estructurales para distintos niveles de planta y usos, y la Tabla 3.2 del DB – SI, con la Resistencia al fuego en zonas de riesgo especial.

Al utilizar los valores simplificados utilizados en éste documento no es necesario tener en cuenta las acciones indirectas derivadas del incendio.

A efectos de aplicación de este DB, proporciona en su parte final una serie de anejos a tener en cuenta, que a continuación se mencionan:

• Anejo SI A – Terminología
• Anejo SI B – Tiempo equivalente de exposición al fuego
• Anejo SI C – Resistencia al fuego de las estructuras de hormigón armado
• Anejo SI D – Resistencia al fuego de los elementos de acero
• Anejo SI E – Resistencia al fuego de las estructuras de madera
1.2 REGLAMENTO DE SEGURIDAD CONTRA INCENDIOS EN INSTALACIONES INDUSTRIALES

El Reglamento de seguridad contra incendios en establecimientos industriales (RSCIEI) establece las normas de diseño, construcción e instalaciones de protección contra incendios que deben cumplir los establecimientos e instalaciones de uso industrial para su seguridad en caso de incendio.

El objetivo de este Reglamento es establecer y definir los requisitos que deben satisfacer y las condiciones que deben cumplir los establecimientos e instalaciones de uso industrial para su seguridad en caso de incendio, así como prevenir su aparición y dar la respuesta adecuada al mismo, caso de producirse, limitando su propagación y posibilitando su extinción. Todo ello con el fin de anular o reducir los daños o pérdidas que los incendios puedan producir a personas o bienes.

El ámbito de aplicación:

- Las industrias, tal como se definen en el artículo 3.1 de la Ley de Industria.
- Los almacenes industriales.
- Los talleres de reparación y los estacionamientos de vehículos destinados al servicio de transporte de personas y transporte de mercancías.
- Se aplicará, además, a todos los almacenes de cualquier tipo de establecimiento cuando su carga de fuego total, calculada según el anexo I, sea igual o superior a tres millones de Megajulios (MJ).
- Así mismo, se aplicará a las industrias existentes antes de la entrada en vigor de este reglamento cuando su nivel de riesgo intrínseco, su situación ó sus características impliquen un riesgo grave para las personas, los bienes ó el entorno, y así se determine por la Administración autonómica competente.

Quedan excluidas de su cumplimiento:

- Las actividades en establecimientos o instalaciones nucleares y radiactivas.
- Las de extracción de minerales.
- Las instalaciones agropecuarias.
- Las instalaciones de uso militar.
- Las actividades industriales y los talleres artesanales con densidad de carga de fuego menor que 10 Mcal/m2 (42 MJ/m2), siempre que su superficie útil sea inferior ó igual a 60 m2, excepto en lo recogido en los apartados 8 y 16 del anexo III.
Todas las instalaciones de protección contra incendios de los establecimientos industriales, su diseño, la ejecución, puesta en funcionamiento, mantenimiento,..., habrán de cumplir lo dispuesto en el Reglamento de Instalaciones de Protección Contra Incendios (RIPCI), aprobado por el R.D. 1942/1993 y la Orden del 16 de Abril de 1998.

1.3 REGLAMENTO DE INSTALACIONES DE PROTECCIÓN CONTRA INCENDIOS

El Reglamento de Instalaciones de Protección de Incendios (RIPCI) promulgado el 5 de Noviembre de 1993, y revisado en su anexo I y apéndices mediante Orden del 16 de Abril de 1998, fue redactado con el fin establecer y definir las condiciones que deben cumplir los aparatos, equipos y sistemas, así como su instalación y mantenimiento empleados en la protección contra incendios.

Es un marco regulador que aporta en una situación anteriormente no regulada, la necesidad de que las instalaciones y su mantenimiento se realicen por instaladores o mantenedores autorizados, de acuerdo a un conjunto de normas UNE, que determinados aparatos y equipos sean ensayados y dispongan de marca de conformidad, y que las operaciones de mantenimiento comprendan unas mínimas rutinas que explicita el RIPCI.

También regula el mercado de fabricantes, instaladores y mantenedores, al objeto de prevenir el intrusismo, la mala práctica y la baja calidad de productos no certificados.
2. NIVEL DE RIESGO

2.1 INTRODUCCIÓN

2.2 CÁLCULO NIVEL DE RIESGO

2.1.1 Planta -1
2.1.2 Planta 0
2.1.3 Planta 1
2.1.4 Planta 2
2.1 INTRODUCCIÓN

En este apartado se seguirá el Anexo I (Caracterización de los establecimientos industriales en relación con la seguridad contra incendios) del RSCIEI, aplicándolo al establecimiento industrial de estudio.

Así, el establecimiento industrial se caracteriza en función de los siguientes apartados:

A) Configuración y ubicación con relación a su entorno.

El establecimiento industrial a estudiar es de tipo B, es decir, ocupa totalmente un edificio que está adosado a otro u otros edificios, o a una distancia igual o inferior a tres metros de otro u otros edificios, de otro establecimiento, ya sean estos de uso industrial o bien de otros usos.

Para establecimientos industriales que ocupen una nave adosada con estructura compartida con las contiguas, se admitirá el cumplimiento de las exigencias correspondientes al tipo B, siempre que se justifique técnicamente que el posible colapso de la estructura no afecte a las naves colindantes.

B) Nivel de riesgo intrínseco.

Para los tipos A, B y C se considera “sector de incendio” al espacio del edificio cerrado por elementos resistentes al fuego durante el tiempo que se establezca en cada caso.

El nivel de riesgo intrínseco se evalúa calculando Q_s “densidad de carga de fuego” y ponderándola y corrigiéndola para los distintos sectores de incendio.

- **Para actividades distintas a la de almacenamiento**

\[
Q_s = \sum_{i} \frac{q_a S_i C_i}{A} R_a \quad (\text{MJ/m}^2) \quad \text{ó} \quad (\text{Mcal/m}^2)
\]

Siendo:
- q_{si}, densidad de carga de fuego de cada zona con proceso diferente MJ/m2
- S_i, superficie de cada zona con proceso diferente, en m2.

Para actividades de almacenamiento

$$Q_s = \frac{\sum_{i=1}^{n} q_{vi} S_i h_i C_i}{A} R_n \ (MJ/m^2) \ (\text{cal/m}^2)$$

Siendo:
- q_{vi}, carga de fuego aportada por cada m3 de cada zona con distinto tipo de almacenamiento existente en el sector MJ/m3
- S_i, superficie ocupada en planta con distinto tipo de almacenamiento, en m2
- h_i, altura de almacenamiento de cada uno de los combustibles, en m.

Establecimiento industrial constituido por varios sectores de incendio

$$Q_e = \frac{\sum_{i=1}^{n} Q_{si} A_i}{\sum_{i=1}^{n} A_i} \ (MJ/m^2) \ (\text{cal/m}^2)$$

Siendo:
- Q_e, densidad de carga de fuego ponderada y corregida del edificio industrial
- Q_{si}, densidad de carga de fuego ponderada y corregida de cada uno de los sectores de incendio del edificio industrial, en MJ/m2
- A_i, superficie construida de cada sector, en m2

2.2 CÁLCULO NIVEL DE RIESGO

A continuación, se determinarán los sectores de incendios por cada planta, y se calculará el nivel de riesgo correspondiente por sector y planta.

Cada planta como mínimo deberá tener un sector de incendios, y otro sector por cada zona de nivel de riesgo especial.
2.2.1 Planta -1

En esta planta se pueden distinguir los siguientes sectores:

I. Sector 1 (riesgo especial)

Teniendo en cuenta el Documento Básico de Seguridad en caso de incendio, en la tabla 2.1, se establece una clasificación de los sectores y zonas de riesgo especial:

| Tabla 2.1 Clasificación de los locales y zonas de riesgo especial integrados en edificios |
|--|--|--|
| **Uso previsto del edificio o establecimiento** | **Tamaño del local o zona** | **Riesgo alto** |
| - Uso del local o zona | **S = superficie construida** | **V = volumen construido** |
| En cualquier edificio o establecimiento: | | |
| - Talleres de mantenimiento, almacenes de elementos combustibles (p. e.: mobiliario, lana, lana, etc.) | 100<V≤200 m³ | 200<V≤400 m³ | V>400 m³ |
| - Archivos de documentos, depósitos de libros, etc. | 5<S≤15 m² | 15<S≤30 m² | S>30 m² |
| - Almacén de residuos | En todo caso | |
| - Aparcamiento de vehículos de hasta 100 m² | En todo caso | |
| - Cocinas según potencia instalada P: | 20<V<50 kW | 50<V<100 kW | V>100 kW |
| - Lavanderías, vestuarios de personal, caminatas | 100<S<200 m² | S<200 m² | | |
| - Salas de cámaras con potencia útil nominal P | 70<K≤200 kW | 200<K<400 kW | K>400 kW |
| - Salas de máquinas de instalaciones de climatización (según Reglamento de Instalaciones termales de los Edificios, RITE, aprobado por RD 1027/2007, de 20 de julio, BOE 2007/08/26) | En todo caso | |
| - Salas de maquinaria frigoríficas: refrigerante amoníaco | P≤400 kW | En todo caso | |
| - Almacén de combustible sólido para calentadores | S≤3 m² | S>3 m² | |
| - Local de contadores de electricidad y de cuadros generales de distribución | En todo caso | |
| - Centro de transformación | | |
| | P≤2 520 kVA | 2 520<P<4 000 kVA | P>4 000 kVA |
| | P≤630 kVA | 630<P<1 000 kVA | P>1 000 kVA |
| | En todo caso | |
| | Sala de máquinas de secado | |
| | Sala de grupo eléctrico | |

| **Residencial Vivienda** | | |
| | Trasteros | 50<S≤100 m² | 100<S≤500 m² | S>500 m² |

Hospitalario				
	Almacenes de productos farmacéuticos y clínicos	100<V<200 m³	200<V<400 m³	V>400 m³
	Estabilización y almacenes anejos	V<500 m³	350<V<650 m³	V>650 m³

| **Administrativo** | | |
| | Imprenta, reprografía y locales anejos, tales como almacenes de papel o de publicaciones, encuadernado, etc. | 100<V<200 m³ | 200<V<500 m³ | V>500 m³ |

| **Residencial Público** | | |
| | Almacenes y locales para la custodia de equipajes | S≤20 m³ | 20<S≤100 m³ | S>100 m³ |

Comercial				
	Almacenes en los que la densidad de carga de fuego ponderada y corregida (Qs) aportada por los productos almacenados sea	425<Qs≤585	585<Qs≤840	Qs>840
		MJ/m²	MJ/m²	MJ/m²
Según la tabla 2.1, se localiza un primer sector de incendios de riesgo especial en la planta bajo rasante. Este sector comprende la sala de máquinas (80 m²), sala de equipos (60 m²), sala de control (40 m²).

Según las actividades que se recogen en la tabla 1.2 del Reglamento de Seguridad contrainscendios en los establecimientos industriales, se pueden obtener los valores de Ra y qsi para cada una de las actividades que se realizan en cada una de las salas que comprenden el sector de riesgo especial.

El coeficiente de peligrosidad de los combustibles se obtiene de la tabla 1.1 del Reglamento de Seguridad contrainscendios en los establecimientos industriales según el tipo de combustible que exista en cada una de las diferentes zonas.

TABLA 1.1

<table>
<thead>
<tr>
<th>VALORES DEL COEFICIENTE DE PELIGROSIDAD POR COMBUSTIBILIDAD, C<sub>i</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTA</td>
</tr>
<tr>
<td>- Líquidos clasificados como clase A en la ITC MIE-APQ1</td>
</tr>
<tr>
<td>- Líquidos clasificados como subclase B₂ en la ITC MIE-APQ1</td>
</tr>
<tr>
<td>- Sólidos capaces de iniciar su combustión a una temperatura inferior a 100 °C.</td>
</tr>
<tr>
<td>- Productos que pueden formar mezclas explosivas con el aire a temperatura ambiente.</td>
</tr>
</tbody>
</table>

| C_i = 1,60 | C_i = 1,30 | C_i = 1,00 |
Por tanto, para cada sala se tiene lo siguiente:

- **Sala de máquinas:**

 Actividad ➔ imprenta, sala de máquinas ➔ Ra=1,5; qs=96 Mcal/m² ; Ci=1,3

 \[
 Q_{si} = \sum_{i} q_{si} \cdot S \cdot C \cdot Ra \cdot A
 \]

 \[
 = 96 \cdot 1,3 \cdot 1,5 = 187,2 \text{ Mcal/m}^2
 \]

- **Sala equipos:**

 Actividad ➔ aparatos eléctricos, mecánicos ➔ Ra=1,5; qs=96 Mcal/m² ; Ci=1,3

 \[
 Q_{si} = \sum_{i} q_{si} \cdot S \cdot C \cdot Ra \cdot A
 \]

 \[
 = 96 \cdot 1,3 \cdot 1,5 = 187,2 \text{ Mcal/m}^2
 \]

- **Sala control:**

 Actividad ➔ imprenta, proceso de datos, sala ordenador ➔ Ra=1,5; qs=96 Mcal/m² ; Ci=1,3

 \[
 Q_{si} = \sum_{i} q_{si} \cdot S \cdot C \cdot Ra \cdot A
 \]

 \[
 = 96 \cdot 1,3 \cdot 1,5 = 187,2 \text{ Mcal/m}^2
 \]

 \[
 Q_{s1} = \frac{\sum_{i} q_{si} \cdot S \cdot C \cdot Ra \cdot A}{A} = 96 \cdot 1,3 \cdot 1,5 \cdot 150/180 = 187,2 \text{ Mcal/m}^2
 \]

Y teniendo en cuenta la tabla siguiente, el nivel de riesgo en este sector de riesgo especial es **bajo de grado 2**, puesto que \(100 < Q_{s1} < 200 \text{ Mcal/m}^2\)

Tabla de niveles de riesgo intrínseco

<table>
<thead>
<tr>
<th>Nivel de riesgo intrínseco</th>
<th>Densidad de carga de fuego ponderada y corregida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mcal/m²</td>
</tr>
<tr>
<td>Bajo</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Q_s \leq 100)</td>
</tr>
<tr>
<td>2</td>
<td>(100 < Q_s \leq 200)</td>
</tr>
<tr>
<td>Medio</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(200 < Q_s \leq 300)</td>
</tr>
<tr>
<td>4</td>
<td>(300 < Q_s \leq 400)</td>
</tr>
<tr>
<td>5</td>
<td>(400 < Q_s \leq 800)</td>
</tr>
<tr>
<td>Alto</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(800 < Q_s \leq 1600)</td>
</tr>
<tr>
<td>7</td>
<td>(1600 < Q_s \leq 3200)</td>
</tr>
<tr>
<td>8</td>
<td>(3200 < Q_s \leq 6400)</td>
</tr>
</tbody>
</table>

II. Sector 2

En este sector está constituido por la zona de aparcamientos, incluyendo aseos y pasillos

El tipo de actividad que se realiza en este sector, según el Reglamento de Seguridad contraincendios en los establecimientos industriales, es “aparcamientos, edificios de” ➔ qsi=48 Mcal/m²; Ra=1,5; Ci=1,6
Por tanto, la densidad de carga al fuego de la planta bajo rasante, se calculará:

\[Q_e = \frac{\sum Q_i \cdot S_i \cdot C_i \cdot R_a}{\sum A_i} = \frac{187.2 \cdot 80 + 187.2 \cdot 60 + 187.2 \cdot 40 + 115.2 \cdot 1517.6}{80 + 60 + 40 + 1517.6} = 124.87 \text{ Mcal/m}^2 \rightarrow 100 \text{ Mcal/m}^2 < Q_e < 200 \text{ Mcal/m}^2 \rightarrow \text{El nivel de riesgo de la planta bajo rasante es bajo de grado 2}

Nota: Todo aparcamiento debe disponer de un vestíbulo de independencia de las escaleras, en su caso este vestíbulo tiene una sección de 30 m2

2.2.2 Planta baja

En esta planta se puede distinguir un único sector, dividido en las siguientes zonas de actividad:

a) Taller de máquinas (300 m2)

En esta zona se pueden realizar las siguientes actividades según tabla1.2 del Reglamento de Seguridad contra incendios en los establecimientos industriales:

- Taller mecánico (150 m2) \(q_{si} = 48 \text{ Mcal/m}^2; R_a = 1; C_i = 1,3 \)
- Taller de pintura (150 m²) \(q_{si} = 120 \text{ Mcal/m²}; \ Ra = 1.5; \ Ci = 1.3 \)

b) Planta de procesos y manipulación de explosivos y armamento (920 m²)

Según tabla 1.2 del Reglamento de Seguridad con tra incendios en los establecimientos industriales, el tipo de actividad que se realiza en esta sala aparece bajo la denominación de “Armas” \(q_{si} = 72 \text{ Mcal/m²}; \ Ra = 1; \ Ci = 1.3 \)

c) Salas de cabinas de soldadura (40 m²)

El tipo de actividad que se realiza en esta zona corresponde a “Soldadura de piezas” \(q_{si} = 168 \text{ Mcal/m²}; \ Ra = 1.5; \ Ci = 1.3 \)

Por tanto, la densidad de carga al fuego ponderada y corregida para esta planta, se calcula como:

\[
Q_s = \frac{\sum q_{si} \times Ci \times Si}{A} = 1.3 \times \left(\frac{150 \times 48 + 150 \times 120 + 1.5 + 920 \times 72 + 1 + 40 \times 168 + 1.5}{40 + 920 + 300 + 50 + 47.8} \right) = 105.8 \text{ Mcal/m²}
\]

\(100 \text{ Mcal/m²} < Q_s < 200 \text{ Mcal/m²} \Rightarrow \) El nivel de riesgo de la planta baja es bajo de grado 2

<table>
<thead>
<tr>
<th>Nivel de riesgo intrínseco</th>
<th>Densidad de carga de fuego ponderada y corregida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mcal/m²</td>
</tr>
<tr>
<td>Bajo</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Q_s \leq 100)</td>
</tr>
<tr>
<td>2</td>
<td>(100 < Q_s \leq 200)</td>
</tr>
<tr>
<td></td>
<td>(425 < Q_s \leq 850)</td>
</tr>
<tr>
<td>Medio</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(200 < Q_s \leq 300)</td>
</tr>
<tr>
<td>4</td>
<td>(300 < Q_s \leq 400)</td>
</tr>
<tr>
<td>5</td>
<td>(400 < Q_s \leq 800)</td>
</tr>
<tr>
<td></td>
<td>(1.700 < Q_s \leq 3.400)</td>
</tr>
<tr>
<td>Alto</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(800 < Q_s \leq 1.600)</td>
</tr>
<tr>
<td>7</td>
<td>(1.600 < Q_s \leq 3.200)</td>
</tr>
<tr>
<td>8</td>
<td>(3.200 < Q_s \leq 6.400)</td>
</tr>
<tr>
<td></td>
<td>(6.800 < Q_s \leq 13.600)</td>
</tr>
<tr>
<td></td>
<td>(13.600 < Q_s)</td>
</tr>
</tbody>
</table>

Nota: Aunque en esta planta no es obligatorio establecer un vestíbulo de independencia para la zona de las escaleras puesto que no existe ningún sector de riesgo especial, se colocará un vestíbulo de sección 43.3 m²

2.2.3 Planta 1

La primera planta se divide en los siguientes sectores:

1. Sector 1 (riesgo especial)
Teniendo en cuenta el Documento Básico de Seguridad en caso de incendio, en la tabla 2.1, se establece una clasificación de los sectores y zonas de riesgo especial:

<table>
<thead>
<tr>
<th>Uso previsto del edificio o establecimiento</th>
<th>Tamaño del local o zona</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S = superficie construida</td>
</tr>
<tr>
<td></td>
<td>V = volumen construido</td>
</tr>
<tr>
<td></td>
<td>Riesgo bajo</td>
</tr>
<tr>
<td>En cualquier edificio o establecimiento:</td>
<td></td>
</tr>
<tr>
<td>- Talleres de mantenimiento, almacenes de</td>
<td>100≤S≤2 000 m²</td>
</tr>
<tr>
<td>elementos combustibles (p. e.: mobiliario,</td>
<td></td>
</tr>
<tr>
<td>limpieza, etc.); archivos de documentos,</td>
<td></td>
</tr>
<tr>
<td>depósitos de libros, etc.</td>
<td></td>
</tr>
<tr>
<td>- Almacén de residuos</td>
<td>5≤S≤15 m²</td>
</tr>
<tr>
<td>- Aparcamiento de vehículos de hasta 100 m²</td>
<td>En todo caso</td>
</tr>
<tr>
<td>- Cocinas según potencia instalada p:[(12)]</td>
<td>20≤P≤30 kW</td>
</tr>
<tr>
<td>- Lavanderías, vestuarios de personal,</td>
<td>20≤S≤100 m²</td>
</tr>
<tr>
<td>camerinos[3]</td>
<td></td>
</tr>
<tr>
<td>- Salas de máquinas de instalaciones de</td>
<td>En todo caso</td>
</tr>
<tr>
<td>climatización (según Reglamento de</td>
<td></td>
</tr>
<tr>
<td>Instalaciones térmicas de los Edificios,</td>
<td></td>
</tr>
<tr>
<td>RTIE, aprobado por RD 1027/2007, de 20 de</td>
<td></td>
</tr>
<tr>
<td>julio, BOE 2007/08/20)</td>
<td></td>
</tr>
<tr>
<td>- Salas de maquinaria frigorífica:</td>
<td>P≤400 kW</td>
</tr>
<tr>
<td>refrigerante amoníaco</td>
<td>S≥3 m²</td>
</tr>
<tr>
<td>refrigerante halogenuido</td>
<td></td>
</tr>
<tr>
<td>- Almacén de combustible sólido para</td>
<td>En todo caso</td>
</tr>
<tr>
<td>calefacción</td>
<td></td>
</tr>
<tr>
<td>- Local de contadores de electricidad y</td>
<td>En todo caso</td>
</tr>
<tr>
<td>de cuadros generales de distribución.</td>
<td></td>
</tr>
<tr>
<td>- Centro de transformación</td>
<td>En todo caso</td>
</tr>
<tr>
<td>- aparatos con aislamiento dieéctrico seco o líquido</td>
<td></td>
</tr>
<tr>
<td>con punto de inflamación mayor que 300°C</td>
<td></td>
</tr>
<tr>
<td>- aparatos con aislamiento dieéctrico con punto de</td>
<td></td>
</tr>
<tr>
<td>inflamación que no exceda de 300°C y</td>
<td></td>
</tr>
<tr>
<td>potencia instalada P: total</td>
<td></td>
</tr>
<tr>
<td>en cada transformador</td>
<td>≤2 500 kVA</td>
</tr>
<tr>
<td>- Sala de maquinaria de ascensores</td>
<td>P≥630 kVA</td>
</tr>
<tr>
<td>- Sala de grupo eléctrico</td>
<td></td>
</tr>
</tbody>
</table>

| Residencial: Vivienda |
|---|-------------------------|
| | 50≤S≤100 m² | 100≤S≤500 m² | S>500 m² |
| Trasteros[4] |
| Hospitalario |
| - Almacenes de productos farmacéuticos y |
| clínicos |
| - Estanqueificación y almacenes anejos |
| - Laboratorios clínicos |
| Adminstrativo |
| - Imprenta, reprografía y locales anejos,|
| tales como almacenes de papel o |
| publicaciones, encuadernado, etc. |
| | 100≤V≤200 m³ | 200≤V≤500 m³ | V>500 m³ |
| Residencial Público |
| - Roperos y locales para la custodia de |
| equipajes |
| - Taller o almacén de decorados, de |
| vestuario, etc. |
| | 100≤V≤200 m³ | V>200 m³ |
| Comercial |
| - Almacenes en los que la densidad de |
| carga de fuego ponderada y congelada |
| (Q2) aportada por los productos |
| almacenados es (h) |
	425≤Qa≤3 850
	850≤Qa≤3 400
	Qa>3 400 MJ/m²
y cuya superficie construida debe ser:	
- en recintos no situados por debajo de	
la planta de salida del edificio	
con instalación automática de extinción	
	S<2 000 m²
	sin instalación automática de extinción
	S<1 000 m²
	en recintos situados por debajo de la
	planta de
	salida del
	edificio
	instalación automática de extinción
	<800 m²
	sin instalación automática de extinción
	<400 m²

| Pública concurrencia |
| | 100≤V≤200 m³ | V>200 m³ |
Según la tabla 2.1, se localiza un primer sector de incendios de riesgo especial en la primera planta. Este sector consiste en un almacén de vestuario de sección 377 m².

Según las actividades que se recogen en la tabla 1.2 del Reglamento de Seguridad contraincendios en los establecimientos industriales, se pueden obtener los valores de Ra y qsi para cada una de las actividades que se realizan en cada una de las salas que comprenden el sector de riesgo especial.

Actividad Almacenamiento ➔ Tejido general, almacén ➔ Ra=2; qsi=481 Mcal/m²

\[Q_{si} = \frac{\sum q_{si} \cdot S_{i} \cdot h_{i} \cdot Ra}{A} = 481 \cdot 2 \cdot 2 = 1924,2 \text{ Mcal/m}^2 \]

Y teniendo en cuenta la tabla siguiente, el nivel de riesgo en este sector de riesgo especial es alto de grado 7, puesto que 1600 < Qs1 < 3200 Mcal/m²

<table>
<thead>
<tr>
<th>Nivel de riesgo intrínseco</th>
<th>Densidad de carga de fuego ponderada y corregida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mcal/m²</td>
</tr>
<tr>
<td></td>
<td>MJ/m²</td>
</tr>
<tr>
<td>Bajo</td>
<td>Q₁ ≤ 100</td>
</tr>
<tr>
<td></td>
<td>425 < Q₁ ≤ 850</td>
</tr>
<tr>
<td>Medio</td>
<td>200 < Q₁ ≤ 300</td>
</tr>
<tr>
<td></td>
<td>850 < Q₁ ≤ 1.275</td>
</tr>
<tr>
<td></td>
<td>1.275 < Q₁ ≤ 1.700</td>
</tr>
<tr>
<td></td>
<td>1.700 < Q₁ ≤ 3.400</td>
</tr>
<tr>
<td>Alto</td>
<td>800 < Q₁ ≤ 1.600</td>
</tr>
<tr>
<td></td>
<td>3.400 < Q₁ ≤ 6.800</td>
</tr>
<tr>
<td></td>
<td>6.800 < Q₁ ≤ 13.600</td>
</tr>
<tr>
<td></td>
<td>13.600 < Q₁</td>
</tr>
</tbody>
</table>

II. Sector 2

Este sector está constituido por los siguientes elementos:

a) Comedor (650 m²)
Actividad ➔ Alimentación, platos precocinados ➔ qsi=48 Mcal/m²; Ra=1; Ci=1,3

b) Aseos, duchas y pasillos (50 + 134,6 + 252,4) m²

Por tanto, la densidad de carga al fuego ponderada para cada una de estas zonas que constituyen el sector 2, se calcula de la manera siguiente:

\[Q_{si} = \frac{\sum q_{si} \cdot S_{i} \cdot Ci \cdot Ra}{A} = \frac{650 \cdot 48 \cdot 1,3 \cdot 1}{650 + 50 + 134,6 + 252,4} = 37,31 \text{ Mcal/m}^2 \Rightarrow Q_{si} < 100 \text{ Mcal/m}^2 \]
Finalmente, la densidad de carga al fuego de la primera planta, se obtiene de la siguiente manera:

$$Q_e = \frac{\sum Q_{SI} \cdot AI}{\sum AI} = \frac{1924 \cdot 377 + 1087 \cdot 37.31}{377 + 1087} = 360,92 \text{ Mcal/m}^2 \Rightarrow 300 \text{ Mcal/m}^2 < Q_e < 400 \text{ Mcal/m}^2 \Rightarrow \text{El nivel de riesgo primera planta es medio de grado 4}$$

<table>
<thead>
<tr>
<th>Nivel de riesgo intrínseco</th>
<th>Densidad de carga de fuego ponderada y corregida</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mcal/m2</td>
</tr>
<tr>
<td>Bajo</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Medio</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Alto</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Nota: En esta planta es obligatorio establecer un vestíbulo de independencia en la zona de las escaleras, puesto existe un sector de riesgo especial. La sección del vestíbulo es 36 m2

2.2.4 Planta 2

En esta planta se distinguen dos sectores, uno de ellos es de riesgo especial.

I. Sector 1 (riesgo especial)

Teniendo en cuenta el Documento Básico de Seguridad en caso de incendio, en la tabla 2.1, se establece una clasificación de los sectores y zonas de riesgo especial:
Según la tabla 2.1, el primer sector de incendios de riesgo especial está comprendido por un almacén de material de oficina de sección 200 m².

Según las actividades de almacenamiento que se recogen en la tabla 1.2 del Reglamento de Seguridad contra incendios en los establecimientos industriales, se pueden obtener los valores...
de Ra y qsi para cada una de las actividades que se realizan en cada una de las salas que comprenden el sector de riesgo especial.

Actividad Almacenamiento → Material oficina técnica (almacenamiento) →

Ra=2; qsi=313 Mcal/m²

\[
Q_{si} = \frac{\sum q_{si} \cdot S_{i} \cdot h_{i} \cdot Ra}{A} = 313 \cdot 2 \cdot 2 = 1252 \text{ Mcal/m}^2
\]

Y teniendo en cuenta la tabla siguiente, el nivel de riesgo en este sector de riesgo especial es alto de grado 6, puesto que \(800 < Q_{si} < 1600 \text{ Mcal/m}^2 \)

II. Sector 2

Este sector está constituido por las siguientes zonas de actividad:

a) Despachos (504,3 m²)

Actividad → Oficina técnica → qsi=144 Mcal/m²; Ra=1; Ci=1,6

b) Sala de servidores (116,2 m²)

Actividad → Proceso datos, ordenadores → qsi=96 Mcal/m²; Ra=1,5; Ci=1,3

Por tanto, la densidad de carga al fuego ponderada para cada una de estas zonas que constituyen el sector 2, se calcula de la manera siguiente:

\[
Q_{si} = \frac{\sum q_{si} \cdot S_{i} \cdot Ci \cdot Ra}{A} = \frac{144 \cdot 504,3 \cdot 1,6 + 1 \cdot 13,96 \cdot 1,5 + 116,2}{1264} = 109,13 \text{ Mcal/m}^2
\]

100 Mcal/m² < Qsi < 200 Mcal/m²
Finalmente, la densidad de carga al fuego de la segunda planta, se obtiene de la siguiente manera:

\[
Q_e = \frac{\sum Q_i \cdot A_l}{\sum A_l} = \frac{125 \cdot 200 + 109 \cdot 13}{1264 + 200} = 265.26 \text{ Mcal/m}^2
\]

\(200 \text{ Mcal/m}^2 < Q_e < 300 \text{ Mcal/m}^2\) ➔ El nivel de riesgo primera planta es medio de grado 3

<table>
<thead>
<tr>
<th>Nivel de riesgo intrínseco</th>
<th>Densidad de carga de fuego ponderada y corregida</th>
<th>Mcal/m²</th>
<th>MJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bajo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Q_i \leq 100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(100 < Q_i \leq 200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(200 < Q_i \leq 300)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(300 < Q_i \leq 400)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(400 < Q_i \leq 800)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(800 < Q_i \leq 1600)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(1600 < Q_i \leq 3200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(3200 < Q_i)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(800 < Q_i \leq 1600)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(1600 < Q_i \leq 3200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(3200 < Q_i)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: En esta planta es obligatorio establecer un vestíbulo de independencia en la zona de las escaleras, puesto existe un sector de riesgo especial. La sección del vestíbulo es 36 m²
3. DISTRIBUCIÓN EXTINTORES

3.1 CRITERIOS A SEGUIR

3.2 DISTRIBUCIÓN EXTINTORES
3.1 CRITERIOS A SEGUIR

La ubicación de los extintores por planta se ha llevado a cabo siguiendo los siguientes criterios:

- No debe haber más de 15 metros de recorrido libre de evacuación sin estar protegido por un extintor.
- En las zonas de riesgo especial, se deberá disponer de un extintor en el exterior del local o de la zona y próximo a la puerta de acceso.
- En locales de riesgo especial alto, el recorrido libre de evacuación deberá ser como máximo 10 metros.

Estos criterios provienen de la tabla 1.1 del Documento básico de seguridad en caso de incendio (S4).

<table>
<thead>
<tr>
<th>Uso previsto del edificio o establecimiento</th>
<th>Condiciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instalación</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1.1. Dotación de instalaciones de protección contra incendios

En general

- Extintores portátiles: Uno de eficacia 21A -113B.
 - Cada 15 m de recorrido en cada planta, como máximo, desde todo origen de evacuación.
 - En las zonas de riesgo especial conforme al capítulo 2 de la Sección 1(*) de este DB.

(*) Un extintor en el exterior del local o de la zona y próximo a la puerta de acceso, el cual podrá servir simultáneamente a varios locales o zonas. En el interior del local o de la zona se instalarán además los extintores necesarios para que el recorrido real hasta alguno de ellos, incluido el situado en el exterior, no sea mayor que 15 m en locales de riesgo especial medio o bajo, o que 10 m en locales o zonas de riesgo especial alto.

3.2 DISTRIBUCIÓN EXTINTORES

A continuación se especifica la distribución de los extintores por planta y la disposición de los sectores de riesgo.
4. SISTEMA DE DETECCIÓN

4.1 IDENTIFICACIÓN NECESIDAD SISTEMA DETECCIÓN DE INCENDIOS

4.2 INSTALACIÓN DEL SISTEMA DE DETECCIÓN AUTOMÁTICO EN EL APARCAMIENTO
4.1 IDENTIFICACIÓN NECESIDAD SISTEMA DETECCIÓN DE INCENDIOS

Teniendo en cuenta la tabla 1.1 del documento SI4 de seguridad contraincendios, se analizará en qué plantas es de obligado cumplimiento establecer un sistema de detección contra incendios.

En la planta bajo rasante al tratarse de un aparcamiento, es de obligado cumplimiento establecer un sistema de detección de incendios pues la superficie excede los 500 m².

En la planta baja, al tratarse de un nivel de riesgo bajo de tipo 2 con actividades distintas a las de almacenamiento para el caso de un edificio de tipo B, no es necesario un sistema de detección de incendios según la tabla siguiente:

<table>
<thead>
<tr>
<th></th>
<th>Bajo</th>
<th>Medio</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>> 300 m²</td>
<td>> 300 m²</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NO</td>
<td>> 2000 m²</td>
<td>> 1000 m²</td>
</tr>
<tr>
<td>C</td>
<td>NO</td>
<td>> 3000 m²</td>
<td>> 2000 m²</td>
</tr>
</tbody>
</table>

Tabla 3.10 Superficie de los sectores de incendio para actividades distintas a las de almacenamiento

En la segunda planta se distinguen dos tipos de actividades en función de ser de almacenamiento o no:

a) Actividad de almacenamiento ➔ Almacén de oficina

- Nivel de riesgo: alto de tipo 6
- Superficie inferior a 500 m²
- Edificio tipo B

Por tanto, no es preciso un sistema de detección de incendios en el almacén.

<table>
<thead>
<tr>
<th></th>
<th>Bajo</th>
<th>Medio</th>
<th>Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>> 150 m²</td>
<td>> 150 m²</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NO</td>
<td>> 1000 m²</td>
<td>> 500 m²</td>
</tr>
<tr>
<td>C</td>
<td>NO</td>
<td>> 1500 m²</td>
<td>> 800 m²</td>
</tr>
</tbody>
</table>

Tabla 3.11 Superficie de los sectores de incendio para actividades de almacenamiento
b) Actividad distinta a la de almacenamiento → Zona de despachos y sala de servidores

Nivel de riesgo: bajo tipo 2

Edificio tipo B

<table>
<thead>
<tr>
<th></th>
<th>BAJO</th>
<th>MEDIO</th>
<th>ALTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>> 300 m²</td>
<td>> 300 m²</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NO</td>
<td>> 2000 m²</td>
<td>> 1000 m²</td>
</tr>
<tr>
<td>C</td>
<td>NO</td>
<td>> 3000 m²</td>
<td>> 2000 m²</td>
</tr>
</tbody>
</table>

Tabla 3.10 Superficie de los sectores de incendio para actividades distintas a las de almacenamiento.

En definitiva, el único sistema de detección automático se ubicará en la planta bajo rasante donde se encuentra el aparcamiento.

4.2 INSTALACIÓN DEL SISTEMA DE DETECCIÓN AUTOMÁTICO EN EL APARCAMIENTO

Los detectores deben ser distribuidos de forma que ningún punto del techo quede a una distancia horizontal mayor del diámetro máximo de un detector.

Por otro lado, la área máxima de vigilancia autorizada no debe ser mayor que los valores que se indican en la tabla:

<table>
<thead>
<tr>
<th>Superficie del local (m²)</th>
<th>Tipo de detector</th>
<th>Altura del local (m)</th>
<th>Pendiente ≤ 20°</th>
<th>Pendiente > 20°</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL ≤ 80</td>
<td>UNE-EN 54-7</td>
<td>≤ 12</td>
<td>80</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>8.2</td>
</tr>
<tr>
<td>SL > 80</td>
<td>UNE-EN 54-7</td>
<td>≤ 6</td>
<td>60</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 < h ≤ 12</td>
<td>80</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>8.7</td>
</tr>
<tr>
<td>SL ≤ 30</td>
<td>UNE-EN 54-5, Clase A1</td>
<td>≤ 7.5</td>
<td>30</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>UNE-EN 54-5, Clase A2, B, C, D, E, F, G</td>
<td>≤ 6</td>
<td>30</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>5.7</td>
</tr>
<tr>
<td>SL > 30</td>
<td>UNE-EN 54-5, Clase A1</td>
<td>≤ 7.5</td>
<td>20</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>UNE-EN 54-5, Clase A2, B, C, D, E, F, G</td>
<td>≤ 6</td>
<td>20</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Tabla A.1 – Distribución de detectores puntuales de humo y calor

Para el caso de nuestro local, la superficie es mayor de 80 m² y la altura menor de 6 m (es decir, se supone una altura de 3 metros).

Si suponemos una pendiente menor a 20°, nos corresponderán los siguientes valores de la tabla:
- Sv=60 m²
- Dmáx = 5,7 m

La disposición de los detectores será de forma que la superficie vigilada forme una matriz de tipo 2.b. Esta matriz aparece representada en la siguiente figura.

Para la formación de dicha matriz, calcularemos el diámetro de la superficie vigilada:

\[D = \sqrt{\frac{4 \cdot 60}{\pi}} = 8,74 \, \text{m} \rightarrow \text{Radio} = 4,37 \, \text{m} \]

Por tanto, para una formación de matriz tipo 2.a, dispondremos cada detector a una distancia en línea recta de valor: 2*Radio= 8,74 metros

En el plano siguiente se puede ver la distribución final de los detectores y la superficie vigilada por los mismos.
SALA DE MÁQUINAS
60 m²

SALA DE EQUIPOS
86 m²

SALA DE CONTROL
40 m²

ASEOS
30 m²

0 5 10

PLANTA -1
5. DISEÑO DE LA RED DE ROCIADORES PARA EL APARCAMIENTO

5.1 NORMATIVA DE APLICACIÓN EN INSTALACIONES DE ROCIADORES

5.2 INTRODUCCIÓN
5.2.1 Determinación de la clase de riesgo del local
5.2.2 Densidad de diseño y área de operación
5.2.3 Distribución de los rociadores y área de cobertura máxima
5.2.4 Calculo hidráulico

5.2.4.1 Condiciones de diseño
5.2.4.2 Pérdidas de carga de la instalación
5.2.4.3 Cotas tuberías y accesorios
5.2.4.4 Determinación de la zona más desfavorable
5.2.4.5 Determinación de la bomba

5.2.5 Descripción de la instalación
5.2.5.1 Abastecimiento de agua
5.2.5.2 Puesto de control
5.2.5.3 Otras válvulas y accesorios
5.2.5.4 Tuberías
5.2.5.5 Rociadores

5.2.6 Selección comercial de los componentes
En este apartado se ha estudiado el proyecto de una red de rociadores para el aparcamiento de un establecimiento industrial constituido de cuatro plantas. El aparcamiento está situado en la planta baja del edificio, en el cual se encuentra también un depósito para el abastecimiento de la red de rociadores y la red de bies distribuida en toda la construcción. Se ha empezado haciendo el proyecto de la red determinado la clase de riesgo, y mediante esta, haciendo referencia a la normativa vigente se ha seguido determinando los criterios de diseño. El cálculo hidráulico ha sido hecho mediante el software Epanet y se han seleccionado en final los componentes comerciales del fabricante VIKING. Como dicho antes, el sistema de abastecimiento es lo mismo para la red de bies y la red de rociadores, por lo tanto en el capítulo siguiente se hará la simulación de las dos redes conjuntas y la selección del equipo de bombeo.

5.1 NORMATIVA DE APLICACIÓN EN INSTALACIONES DE ROCIADORES

Esta norma especifica los requisitos y da recomendaciones para el diseño, instalación y mantenimiento de sistemas fijos de rociadores contra incendio en edificios y plantas industriales, e incluye requisitos particulares para sistemas de rociadores que forman parte integrante de medidas para la protección de la vida. Incluye la clasificación de riesgos, la dotación de abastecimiento de agua, los componentes a emplear, la instalación y prueba del sistema, su mantenimiento y la ampliación de sistemas existentes. Además, identifica los detalles de la construcción que son críticos para el funcionamiento satisfactorio de sistemas de rociadores de acuerdo con esta norma.

Esta norma especifica los requisitos para la fabricación y condiciones de operación de los rociadores que funcionan por cambio de estado de un elemento o por rotura de una ampolla de cristal debido a la acción del calor, para su utilización en sistemas de rociadores automáticos que cumplen la Norma Europea EN 12845 Sistemas de rociadores automáticos. Parámetros de diseño e instalación. También se indican los ensayos de aprobación de tipo así como la secuencia en que deben realizarse éstos.

Esta norma especifica los requisitos para la fabricación y funcionamiento de los conjuntos de válvulas de alarma de tubería mojada y cámaras de retardo utilizados en los sistemas de rociadores automáticos. Los componentes auxiliares y anexos a los conjuntos de válvulas de alarma de tubería mojada y cámaras de retardo no están cubiertos por esta norma.

En esta norma se especifican los requisitos para la fabricación y funcionamiento de alarmas hidromecánicas para su uso con válvulas de alarma conformes con las Normas Europeas EN 12259-2, EN 12259-3 y EN 12259-9 en sistemas de rociadores automáticos que cumplen lo especificado en la Norma Europea EN 12845. También se indican los ensayos a realizar para aprobaciones de tipo, así como el programa de ensayos para dicha aprobación de tipo.

Esta norma especifica los requisitos de construcción, comportamiento y pruebas para detectores de flujo de agua para uso en sistemas automáticos de rociadores de tubos húmedos de acuerdo con la norma UNE 12845.

Esta parte de la norma UNE 23850 es complementaria de la parte 1, y debe ser utilizada conjuntamente con ella. Recoge los aspectos relativos a la inspección técnica para el mantenimiento de los sistemas de rociadores, en manera de ayudar a valorar el estado de la instalación analizando su conservación y correcto funcionamiento.

Real decreto 2267/2004, de 3 de Diciembre. Reglamento de seguridad contra incendios en los establecimientos industriales.

Este reglamento tiene por objeto establecer y definir los requisitos que deben satisfacer y las condiciones que deben cumplir los establecimientos e instalaciones de uso industrial para su seguridad en caso de incendio, para prevenir su aparición y para dar la respuesta adecuada, en caso de producirse, limitar su propagación y posibilitar su extinción, con el fin de anular o reducir los daños o pérdidas que el incendio pueda producir a personas o bienes. Este reglamento se aplicará, con carácter complementario, a las medidas de protección contra incendios establecidas en las disposiciones vigentes que regulan actividades industriales,
sectoriales o específicas, en los aspectos no contemplados en ellas, las cuales serán de completa aplicación en su campo.

5.2 INTRODUCCIÓN

Un sistema de rociadores es una instalación automática diseñada para la detección de incendios y su extinción, o en los casos en los cuales esto no es posible, permite por lo menos tener bajo control las llamas en manera que su extinción pueda ser completada mediante otros sistemas, como por ejemplo las bies y los extintores. En particular un rociador automático es una boquilla con un dispositivo de cierre termosensible que se abre para descargar agua sobre el incendio. Los componentes principales de esta instalación son:

- **Abastecimiento de agua:** es la parte del sistema que permite de proporcionar el agua necesaria para el funcionamiento de los rociadores, según caudal, presión y tiempo de funcionamiento establecida en la norma UNE 12845.

- **Puesto de control:** conjunto que incorpora una válvula de alarma, una válvula de cierre y todas las válvulas y accesorios para el control de la instalación.

- **Red de tuberías:** sobre la cual se instalan las cabezas de rociador.

5.2.1 Determinación de la clase de riesgo del local

Antes de empezar el diseño de la red de rociadores, hace falta determinar la clase de riesgo correspondiente al local a proteger. De la norma UNE 12854 se encuentra que para el caso en examen se debe considerar la clase de Riesgo Ordinario (RO), y en particular, desde la tabla del anexo A de la misma normativa, se determina que los aparcamientos son considerados con RO2.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Grupo de Riesgo Ordinario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RO1</td>
</tr>
<tr>
<td>Vidrio o cristal y cerámica</td>
<td></td>
</tr>
<tr>
<td>Química</td>
<td>fábricas de cemento</td>
</tr>
<tr>
<td>Ingeniería</td>
<td>talleres de chapistería</td>
</tr>
<tr>
<td>Alimentación</td>
<td>mataderos lecherías</td>
</tr>
<tr>
<td>Varias</td>
<td>hospitales hoteles biblotecas (pero no librerías) restaurantes colegios oficinas</td>
</tr>
</tbody>
</table>

Tabla 1 Riesgo ordinario
5.2.2. Densidad de diseño y área de operación

Con el término “densidad de diseño” se entiende el caudal que la red es capaz de descargar relativamente a un metro cuadrado de superficie, mientras el “Área de operación” es el área máxima sobre la cual se supone, para efectos de diseño, que se abrirán los rociadores en caso de incendio. La densidad de diseño de los rociadores debe ser igual o superior a lo especificado en la tabla siguiente de la norma UNE 12845:

<table>
<thead>
<tr>
<th>Clase de riesgo</th>
<th>Densidad de diseño mm/min</th>
<th>Área de operación m²</th>
<th>Seca o alterna</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td>2,25</td>
<td>84</td>
<td>No se permite</td>
</tr>
<tr>
<td>RO1</td>
<td>5,0</td>
<td>72</td>
<td>Usar RO1</td>
</tr>
<tr>
<td>RO2</td>
<td>5,0</td>
<td>144</td>
<td>180</td>
</tr>
<tr>
<td>RO3</td>
<td>5,0</td>
<td>216</td>
<td>270</td>
</tr>
<tr>
<td>RO4</td>
<td>5,0</td>
<td>360</td>
<td>No se permite</td>
</tr>
<tr>
<td>REP1</td>
<td>7,5</td>
<td>260</td>
<td>325</td>
</tr>
<tr>
<td>REP2</td>
<td>10,0</td>
<td>260</td>
<td>325</td>
</tr>
<tr>
<td>REP3</td>
<td>12,5</td>
<td>260</td>
<td>325</td>
</tr>
<tr>
<td>REP4</td>
<td>diluvio (véase la nota)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTA: Requiere consideración especial. Los sistemas de diluvio no están cubiertos por esta norma.

Se puede ver que para RO2 la norma requiere una densidad de diseño de \(\frac{5 \text{ mm}}{\text{m}^2} \), que equivalen a \(5 \frac{\text{ l/min}}{\text{m}^2} \). Considerando que en el caso en examen no existen posibilidades de daño por hielo y la temperatura ambiente no supera los 95 °C, la red de rociadores que se va a instalar es una instalación mojada, es decir, es una instalación permanentemente presurizada con agua. Por lo tanto, de la tabla anterior de saca que el área de operación correspondiente es de \(144 \text{ m}^2 \). La superficie máxima controlada por un solo puesto de control mojado se deduce de la tabla 17 de la norma [ref], y para riesgo ordinario tiene que ser menor de \(12000 \text{ m}^2 \). Esto no va a afectar el diseño de la red del aparcamiento, siendo la superficie de esto menor que \(1500 \text{ m}^2 \), donde se habrá por lo tanto un solo puesto de control.

<table>
<thead>
<tr>
<th>Clase de riesgo</th>
<th>Superficie máxima protegida por puesto de control m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td>10 000</td>
</tr>
<tr>
<td>RO, incluyendo los rociadores de RL, si los hay</td>
<td>12 000, excepto tal como se permite en los anexos D y F</td>
</tr>
<tr>
<td>RE, incluyendo los rociadores de RO y RL, si los hay</td>
<td>9 000</td>
</tr>
</tbody>
</table>

Tabla 3
5.2.3 Distribución de los rociadores y área de cobertura máxima

Hace falta determinar ahora la distribución de los rociadores y la superficie máxima de cobertura por rociador; considerando siempre RO2, en función de la posición del rociador se ha:

- Rociadores normales:
 - Superficie máx. por rociador: $A_{\text{max}} = 12 \text{ m}^2$;
 - Distancia entre rociadores: 4 m.

- Rociadores de pared:
 - Superficie máx. por rociador: 9 m^2;
 - Distancia entre rociadores: 3,4 m, la cual se puede aumentar hasta 3,7 m siempre que el techo tenga una resistencia al fuego no inferior a 120 minutos.

Considerando ahora la posición de rociadores en relación a miembros estructurales, la norma UNE 12845 establece que para distribución normal los rociadores deben estar a una distancia máxima de 2 m de la pared. A partir de estas reglas, se ha decidido de poner todos los rociadores a una distancia de 3,7 m entre ellos y 2 m de las paredes. Por lo tanto, se ha planteado la distribución enseñada en la figura siguiente en la cual las medidas son todas en metros:

![Figura 1. Distribución rociadores](image-url)
Como se puede ver, se ha elegido una distribución normal en rejillas, con 2 colectores principales a los cual son conectados los ramales de la red. De tal forma se han obtenido en total 91 rociadores. El diseño de la red puede ser hecho con sistemas precalculados o calculados. En este caso se empleará un sistema calculado, donde los diámetros serán determinados por cálculo hidráulico.

5.2.4 Calculo hidráulico

El cálculo de la instalación se hará mediante el software de simulación de redes hidráulicas “Epanet”, con el cual se determinaran:

- Dimensiones de las tuberías;
- caudal y altura de la bomba;
- determinación del área hidráulicamente más desfavorable.

5.2.4.1 Condiciones de diseño

Se empieza antes de todo a seleccionar el tipo de rociador para la instalación; estos son diferentes según la clase de riesgo del local a proteger. Desde la siguiente tabla se puede elegir uno de los rociadores indicados para riesgo ordinario RO, los cuales tienen un factor $K = 80$.

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Densidad de diseño mm/min</th>
<th>Tipo de rociador</th>
<th>Factor K nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td>2,25</td>
<td>Convencional o pulverizador</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semiempotrado</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulverizador plano</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empotrado o escondido de pared</td>
<td></td>
</tr>
<tr>
<td>RO</td>
<td>5,0</td>
<td>Convencional o pulverizador</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semiempotrado</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulverizador plano</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empotrado o escondido de pared</td>
<td></td>
</tr>
<tr>
<td>REP y REA</td>
<td>≤ 10</td>
<td>Convencional o pulverizador</td>
<td>80 ó 115</td>
</tr>
<tr>
<td>Rociadores de techo</td>
<td></td>
<td>Semiempotrado</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulverizador plano</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Empotrado o escondido de pared</td>
<td></td>
</tr>
<tr>
<td>REA</td>
<td>> 10</td>
<td>Convencional o pulverizador</td>
<td>115</td>
</tr>
<tr>
<td>Rociadores intermedios en almacenamientos altos</td>
<td></td>
<td>Convencional, pulverizador o</td>
<td>80 ó 115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulverizador plano</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4 Rociador para RO

El caudal a emitir por cada rociador es igual a:

$$Q_{1 \text{ROC}} = A_{\text{max}} \times d = 12 \times 5 = 60 \left[\frac{l}{min} \right] = 1 \left[\frac{l}{s} \right]$$

En la cual:

$A_{\text{max}} = 12 \text{ m}^2$: es la superficie máxima por rociador en el caso de RO2;
\[d = 5 \left[\frac{mm}{m^2} \right] = 5 \left[\frac{L/min}{m^2} \right] \]: es la densidad de diseño.

La presión mínima de alimentación para RO, según norma UNE tiene que ser: \(p \geq 0,35 \text{ [bar]} \). Esta se puede calcular como:

\[
p = \frac{Q^2_{1\,ROC}}{K^2} = \frac{60^2}{80^2} = 0,5625 \text{ [bar]} = 5,736 \text{ [m. c. a.]}\]

En caso de incendio se va a activar solamente un área de operación (véase tabla 2), la cual está constituida de un número de rociadores obtenido partiendo el área de operación por el área de cobertura máxima de 1 rociador:

\[
N_{roc} = \frac{A_{oper}}{A_{max}} = \frac{144}{12} = 12 \text{ rociadores}
\]

Por lo tanto, el caudal total que debe emitir la bomba es igual a:

\[
Q_{TOT} = N_{roc} \cdot Q_{1\,ROC} = 12 \cdot 60 = 720 \left[\frac{L}{min} \right]
\]

5.2.4.2 Pérdidas de carga de la instalación

En particular hace falta tener en cuenta de:

- Perdidas distribuidas: debidas a la rugosidad de las tuberías;
- Perdidas en accesorios y en variaciones de sección.

El programa permite de calcular las pérdidas de carga mediante tres métodos diferentes:

- Método de Hazen - Williams;
- Método de Darcy – Weisbach;
- Metodo de Chazy – Manning.

La norma UNE 12485 establece que la perdida por fricción en las tuberías no debe ser inferior a la calculada mediante la fórmula de Hazen-Williams:

\[
\Delta_H = 12,10^9 \frac{Q^{1.85}}{C_H^{1.85}} \cdot \frac{L_t}{D^{4.87}}
\]

En la cual:

- \(\Delta_H \) es la perdida de carga en m.c.a.;
- \(Q \) es el caudal en l/s;
- \(L_t \) es la longitud de la tubería en m;
- \(C_H \) es el coeficiente de rugosidad (adimensional);
- \(D \) es el diámetro interno de la tubería e mm.
Para tener en cuenta de las pérdidas en tuberías hace falta introducir en el programa el valor del coeficiente de rugosidad correspondiente al material empleado; decidiendo de emplear tuberías de acero galvanizado, la literatura proporciona la siguiente tabla:

<table>
<thead>
<tr>
<th>Material</th>
<th>Hazen-Williams C (adimensional)</th>
<th>Manning's n (adimensional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierro Colado</td>
<td>130 – 140</td>
<td>0.012 - 0.015</td>
</tr>
<tr>
<td>Hormigón o Revestido de Hormigón</td>
<td>120</td>
<td>0.012 - 0.017</td>
</tr>
<tr>
<td>Hierro galvanizado</td>
<td>120</td>
<td>0.015 - 0.017</td>
</tr>
<tr>
<td>Plástico</td>
<td>140 – 150</td>
<td>0.011 - 0.015</td>
</tr>
<tr>
<td>Acero</td>
<td>140 – 150</td>
<td>0.015 - 0.017</td>
</tr>
<tr>
<td>Arcilla Vitrificada</td>
<td>110</td>
<td>0.013 - 0.015</td>
</tr>
</tbody>
</table>

Tabla 5 Coeficiente de rugosidad

Empleando entonces un valor igual a:

\[
C = 120
\]

Para calcular la perdida de carga en los accesorios se considera la longitud equivalente de estos en función del diámetro de la tubería considerada. La norma UNE 12845 proporciona la siguiente tabla:

<table>
<thead>
<tr>
<th>Accesorios y válvulas</th>
<th>Longitud equivalente de tubo recto de acero ((C = 120)^*) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Codo rosado 90º (normalizado)</td>
<td>0.76</td>
</tr>
<tr>
<td>90º Codo soldado ((r/d = 1.5))</td>
<td>0.30</td>
</tr>
<tr>
<td>Codo rosado 45º (normalizado)</td>
<td>0.34</td>
</tr>
<tr>
<td>Te roscada normal o cruz (\text{con cambio de sentido del flujo})</td>
<td>1.3</td>
</tr>
<tr>
<td>Válvula de compuerta - inmediatamente</td>
<td>–</td>
</tr>
<tr>
<td>Válvula de alarma o retención (\text{con clapeta})</td>
<td>–</td>
</tr>
<tr>
<td>Válvula de alarma o retención (\text{con seta})</td>
<td>–</td>
</tr>
<tr>
<td>Válvula de mariposa</td>
<td>–</td>
</tr>
<tr>
<td>Válvula de esfera</td>
<td>–</td>
</tr>
</tbody>
</table>

* Estas longitudes equivalentes se pueden convertir, en su caso, para tubos con diferentes valores \(C\) multiplicando por los siguientes factores:

- \(C\) \(\text{Factor}\) 100 110 120 130 140
- 0.714 0.85 1.00 1.16 1.33

Tabla 6 Longitudes equivalentes de los accesorios
Para hacer la simulación de la red se han empleado los siguientes diámetros:

- **Ramales:** $d = 50$ [mm];
- **Colectores:** $D = 80$ [mm];
- **Colector general:** $D = 200$ [mm]

Por lo tanto, hace falta añadir la longitud equivalente de los accesorios, a la longitud real de las tuberías que constituyen la red. Las pérdidas por fricción se producen en los siguientes:

- Codos roscados de 90°;
- Te roscada con reducción de sección 200 → 80 [mm];
- Te roscada con reducción de sección 80 → 50 [mm];
- Conjunto de válvulas del puesto de control;

En literatura no se ha encontrado la longitud equivalente de las Te reductoras, por lo tanto esta ha sido calculada sumando la perdida de una Te normal más la perdida debida a una reducción. En la siguiente tabla se indican los valores de las longitudes empleadas:

<table>
<thead>
<tr>
<th>Tubería [mm]</th>
<th>L.E. [m] Codos 90°</th>
<th>L.E. [m] TE roscadas</th>
<th>L.E. [m] Reducciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D = 200$</td>
<td>5,7</td>
<td>11</td>
<td>(200 → 80) 9</td>
</tr>
<tr>
<td>$D = 80$</td>
<td>2,4</td>
<td>4,8</td>
<td>(80 → 50) 2</td>
</tr>
<tr>
<td>$D = 50$</td>
<td>1,5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 7 Longitudes equivalentes empleadas

Como dicho antes se han elegidos rociadores para Riesgo Ordinario aventes un coeficiente de emisor igual a $K=80$, los cuales proporcionan el caudal calculado con la siguiente fórmula:

$$Q = K \sqrt{\Delta p}$$

en esta el caudal es en [l/min] mientras la presión es en [bar]. Debiendo introducir el factor K en Epanet, hace falta pero calcular el nuevo valor que esto tiene, siendo las unidades de medidas empleadas del software en [l/s] y [m.c.a.]. Teniendo en cuenta que:

- 1 [m.c.a.] = $\frac{9810}{10^5}$ [bar]
- 1 [l] = 60 [l/min]

Se obtiene:

$$Q [l/s] = \frac{80}{60} \sqrt{\frac{9810}{10^5} \cdot \Delta p [bar]}$$

Por lo tanto, el nuevo coeficiente de introducir en Epanet es igual a:

$$K' = \frac{80}{60} \sqrt{\frac{9810}{10^5}} = 0,4176$$
5.2.4.3 Cotas tuberías y accesorios

Para efectuar la simulación hace falta introducir las cotas a las cuales se encuentran los rociadores respecto a la bomba. Siendo el aparcamiento en la planta baja del establecimiento, se ha asumido que la bomba se encuentre a una cota igual a −3 [m] mientras los rociadores son a cota 0 [m], es decir, hay una diferencia de altura igual a 3 metros. En la figura 2 son enseñadas además los diámetros empleadas para las tuberías.

5.2.4.4 Determinación de la zona más desfavorable

Se ha procedido dibujando la red en Epanet introduciendo los datos descritos antes; efectuando diferentes pruebas se ha establecido que se puede elegir como área hidráulicamente más desfavorable la que está enseñada en la figura siguiente:

![Figura 2 Área más desfavorable y dimensiones tuberías](image)

Los cálculos de simulación de la red se harán por lo tanto considerando que la activación del sistema implique la descarga del agua en el área ahora determinada.
5.2.4.5 Determinación de la bomba

Es posible ahora hacer la simulación de la red, ajustando caudal y altura de la bomba hasta que no se cumplan los siguientes requisitos determinados antes en el área de operación:

- Caudal a emitir por rociador: 1 [l/s];
- Presión mínima en cada rociador: \(p = 5,736 \text{ m.c.a.} \).

Haciendo la simulación se obtienen las presiones enseñadas en la figura siguiente. Como se puede ver en el área de operación estas son todas mayores del valor mínimo calculado, por lo tanto se asegura que también el caudal mínimo a emitir por cada rociador es garantizado.

Figura 3 Distribución de presión
La curva de la bomba empleada es la siguiente, donde viene enseñado el punto de funcionamiento:

![Figura 4 Curva de la bomba](image)

La ecuación de esta curva es igual a:

\[H = 26,67 - 0,1042 \cdot Q^2 \]

5.2.5 Descripción de la instalación

Se sigue ahora describiendo los componentes principales que hace falta considerar en la instalación.

5.2.5.1 Abastecimiento de agua

El abastecimiento de agua para la instalación de los rociadores, siendo en el caso de Riesgo Ordinario, debe tener una capacidad suficiente para garantizar 60 minutos de funcionamiento.

En este caso el abastecimiento de agua del sistema es combinado, siendo la instalación constituida de una red de rociadores y una red de bies. Haciendo referencia a la norma UNE 12845 se observa que los abastecimientos combinados deben cumplir las siguientes condiciones:

- Los sistemas deben ser calculados integralmente;
- El suministro debe ser capaz de dar la suma de caudales simultáneos máximos calculados para cada sistema. Los caudales deben ajustarse a la presión requerida por el sistema más exigente;
- La duración debe ser igual o superior a la requerida por el sistema más exigente;
- Se deben duplicar las conexiones desde el abastecimiento de agua hasta los sistemas.

El cálculo del sistema de abastecimiento se hará en el apartado ____ en el cual se efectuará el estudio del sistema conjunto red de bies y rociadores, haciendo pero referencia a la norma UNE 12845, se indican ahora los equipos de control y seguridad que hace falta tener en cuenta.
El depósito debe estar provisto de:

- un manómetro que marque la presión manométrica correcta;
- dispositivos de seguridad adecuados para impedir que se pueda superar la presión más alta permitida;
- un vidrio indicador de nivel para indicar el nivel de agua;
- válvulas de cierre normalmente cerradas en cada extremo del indicador;
- una válvula de desagüe.

El depósito debe estar provisto de un sistema de aviso automático que indique el fallo de los dispositivos de restauración de nivel de agua o presión del aire. Las alarmas deben darse visual y audiblemente desde el puesto de control o un puesto permanentemente vigilado.

5.2.5.2 Puesto de control

En esta instalación hay un solo puesto de control, el cual se instalará a salida del grupo de bombeo y debe cumplir la Norma UNE 12259 – 2; se indicaran ahora a continuación los componentes principales de este sistema.

Válvula de alarma: es la válvula que permite el flujo de agua dentro de una instalación de rociadores de sistema mojado; además esta impide el flujo en dirección contraria.

- El diámetro nominal de esta coincide con el de la tubería en la cual tiene que ser instalada, es decir, en este caso es igual a:

 \[DN = 200 \text{ [mm]} \]

- El cuerpo y en su caso la tapa deben construirse en fundición de hierro, bronce, latón, monel, acero inoxidable, titanio u otros materiales con propiedades físicas y mecánicas equivalentes.

Alarma hidromecánica: dispositivo de alarma, accionado por agua, acoplado a la válvula de alarma, que produce una alarma acústica local cuando actúa la instalación de rociadores. De acuerdo con la norma UNE 12259-4 cada puesto de control debe estar provisto de su propia alarma hidráulica, y además debe poseer un dispositivo eléctrico de transmisión de alarma a distancia.

Cámara de retardo: es un dispositivo volumétrico para minimizar falsas alarmas causadas por impulsor y fluctuaciones en la presión de acometida

Válvulas de prueba de alarma y arranque de la bomba: se instalarán válvulas de prueba de 15 mm para probar la alarma hidráulica y el presostato eléctrico de alarma. La toma debe hacerse inmediatamente aguas abajo de la válvula de alarma mojada, y las válvulas de cierre aguas abajo de la misma.

Manómetros: se deben instalar inmediatamente aguas arriba y aguas abajo del puesto de control.
Figura 5 Funcionamiento válvula de alarma

En la figura siguiente se enseña un esquema de los componentes principales del puesto de control.
5.2.5.3 Otras válvulas y accesorios

Válvulas de cierre: todas las válvulas de cierre que podrían cortar el suministro de agua a los rociadores deben:

- Cerrar hacia la derecha;
- Estar provistas de un indicador que muestre si la válvula está abierta o cerrada;
- Mantenerse en posición abierta

Válvulas de desagüe: se deben instalar para permitir el desagüe en las siguientes posiciones:

- Aguas abajo del puesto de control o de su válvula de cierre (si la hay);
- Aguas abajo de cualquier válvula subsidiaria de alarma y de cierre;
- En cualquier tubería que no pueda vaciarse por otra válvula de desagüe.

Interruptores de flujo: deben instalarse en instalaciones mojadas. Se debe instalar una conexión de prueba aguas debajo de cada interruptor para simular el funcionamiento de un solo rociador. Debe estar provisto de desagüe de tubo de acero galvanizado o cobre.

5.2.5.4 Tuberías

Las tuberías que se emplearan desde el abastecimiento hasta los rociadores son tuberías aéreas de acero galvanizado las cuales deben ser pintadas solo en aquellos casos en los cuales el galvanizado haya sido dañado. Además hay que tener en cuenta que debe ser posible desaguar toda la red de tubería, y si esto no es posible mediante la válvula de desagüe de puesto de control, hace falta introducir otras válvulas de desagüe adicionales.

5.2.5.5 Rociadores

Como dicho anteces, los rociadores tienen un elemento termosensible, el cual puede ser de ampolla de cristal llena de líquido o rociadores de fusible. Para la instalación se ha decidido emplear rociadores de ampolla colgantes, en los cuales las boquillas dirigen el chorro de agua hacia abajo. Por lo tanto, los rociadores funcionan a temperaturas predeterminadas la cual se elige en función de la temperatura ambiente. La norma UNE 12845 establece que se deben emplear rociadores avientes una temperatura de funcionamiento ligeramente superior a 30° C por encima de la temperatura ambiente más alta prevista. Además la norma UNE 12259 proporciona la siguiente tabla para la selección del rociador adecuado:
Por lo tanto, suponiendo una temperatura ambiente máxima de 33 – 35 °C se ha elegido de emplear un rociador de ampolla ROJO, el cual tiene una temperatura de actuación de 68 °C.

5.2.6 Selección comercial de los componentes

Se indicarán ahora los componentes comerciales del constructor VIKING, incluyendo además la lista de precios.

Rociadores

<table>
<thead>
<tr>
<th>Columna 1</th>
<th>Columna 2</th>
<th>Columna 3</th>
<th>Columna 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura nominal de actuación °C</td>
<td>Código de color del líquido</td>
<td>Temperatura nominal en el rango °C</td>
<td>Código de color en el brazo</td>
</tr>
<tr>
<td>57</td>
<td>naranja</td>
<td>57 a 77</td>
<td>s/color</td>
</tr>
<tr>
<td>68</td>
<td>rojo</td>
<td>80 a 107</td>
<td>blanco</td>
</tr>
<tr>
<td>79</td>
<td>amarillo</td>
<td>121 a 149</td>
<td>azul</td>
</tr>
<tr>
<td>93</td>
<td>verde</td>
<td>163 a 191</td>
<td>rojo</td>
</tr>
<tr>
<td>100</td>
<td>verde</td>
<td>204 a 246</td>
<td>verde</td>
</tr>
<tr>
<td>121</td>
<td>azul</td>
<td>260 a 302</td>
<td>naranja</td>
</tr>
<tr>
<td>141</td>
<td>azul</td>
<td>320 a 343</td>
<td>negro</td>
</tr>
<tr>
<td>163</td>
<td>malva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>malva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>negro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>negro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>negro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>286</td>
<td>negro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>343</td>
<td>negro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8 Selección rociador

Por lo tanto, suponiendo una temperatura ambiente máxima de 33 – 35 °C se ha elegido de emplear un rociador de ampolla ROJO, el cual tiene una temperatura de actuación de 68 °C.

5.2.6 Selección comercial de los componentes

Se indicarán ahora los componentes comerciales del constructor VIKING, incluyendo además la lista de precios.

Rociadores

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Factor (mód.)</th>
<th>Referencia base</th>
<th>Bronce</th>
<th>Cromado</th>
<th>Pintado blanco</th>
<th>Pintado negro</th>
<th>Teflón negro</th>
<th>Encreado</th>
<th>Pintado & encreado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 NPT</td>
<td>60</td>
<td>VK1018</td>
<td>8.39</td>
<td>9.74</td>
<td>9.90</td>
<td>16.74</td>
<td>24.68</td>
<td>19.72</td>
<td>25.28</td>
</tr>
<tr>
<td>1/4 NPT</td>
<td>40</td>
<td>VK0003</td>
<td>21.73</td>
<td>24.65</td>
<td>25.86</td>
<td>25.86</td>
<td>30.62</td>
<td>25.67</td>
<td>31.72</td>
</tr>
<tr>
<td>1/4 NPT</td>
<td>57</td>
<td>VK0004</td>
<td>21.73</td>
<td>24.66</td>
<td>25.86</td>
<td>25.86</td>
<td>30.62</td>
<td>25.67</td>
<td>31.72</td>
</tr>
<tr>
<td>1/2 NPT</td>
<td>115</td>
<td>VK2002</td>
<td>19.20</td>
<td>21.37</td>
<td>22.21</td>
<td>22.20</td>
<td>26.89</td>
<td>22.49</td>
<td>27.94</td>
</tr>
<tr>
<td>10 mm BSP</td>
<td>115</td>
<td>VK0004</td>
<td>11.43</td>
<td>12.60</td>
<td>18.80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Llaves de rociador: 10896/W/B - Normal, 12144/W/B - Colgante semiempotrado y tapa de protección, 13577/W/B - Semiempotrado y pintado o recubierto.

Temperaturas disponibles (°C): 68=B, 79=D, 93=E, 141=F, 182=H

Cómo pedir rociadores:

Añadir los sufijos de acabado y de temperatura a la referencia base.

<table>
<thead>
<tr>
<th>Sufijo B D E G H</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>286</td>
</tr>
<tr>
<td></td>
<td>182</td>
<td>360</td>
</tr>
</tbody>
</table>

Ejemplo:

Referencia base 10171 + Sufijo de acabado F + Temperatura B = 10171FB

SUPLEMENTOS

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Precio Unitario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Por rociador (100°C / 182°C), añadir</td>
<td>1.05</td>
</tr>
<tr>
<td>Por cada rociador con cinta de teflón, añadir</td>
<td>0.48</td>
</tr>
<tr>
<td>Por cada rociador abierto con teflón, añadir</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Válvulas y accesorios

SISTEMA DE TUBERÍA MOJADA UL/FM Modelo J-1
VERTICAL O HORIZONTAL
(Se muestra vertical)

<table>
<thead>
<tr>
<th>POS.</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Válvula de alarma Modelo J-1</td>
</tr>
<tr>
<td>B</td>
<td>Trm válvula de alarma Modelo J-1, incluyendo:</td>
</tr>
<tr>
<td>B.01</td>
<td>Válvula de paso de alarma</td>
</tr>
<tr>
<td>B.02</td>
<td>Válvula de prueba</td>
</tr>
<tr>
<td>B.03</td>
<td>Válvula retención ¾"</td>
</tr>
<tr>
<td>B.04</td>
<td>Manómetro de agua</td>
</tr>
<tr>
<td>B.05</td>
<td>Válvula en ángulo para manómetro</td>
</tr>
<tr>
<td>B.06</td>
<td>Válvula de bola</td>
</tr>
<tr>
<td>B.07</td>
<td>Orificio restricción 3,2 mm</td>
</tr>
<tr>
<td>B.08</td>
<td>Orificio restricción 6,6 mm</td>
</tr>
<tr>
<td>B.09</td>
<td>Orificio restricción 9,5 mm</td>
</tr>
<tr>
<td>C</td>
<td>Válvula de soseñamiento</td>
</tr>
<tr>
<td>D</td>
<td>Indicador de flujo</td>
</tr>
<tr>
<td>E</td>
<td>Campana eléctrica</td>
</tr>
<tr>
<td>F</td>
<td>Presostato</td>
</tr>
<tr>
<td>G</td>
<td>Motor de agua y gong Modelo F-2, incluyendo:</td>
</tr>
<tr>
<td>G.01</td>
<td>Filtro ¾" línea de alarma</td>
</tr>
</tbody>
</table>

SISTEMA DE TUBERÍA MOJADA UL/FM Modelo J-1
CON CÁMARA DE RETARDO, VERTICAL O HORIZONTAL
(Se muestra vertical)

<table>
<thead>
<tr>
<th>POS.</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Válvula de alarma Modelo J-1</td>
</tr>
<tr>
<td>B</td>
<td>Trm válvula de alarma Modelo J-1, incluyendo:</td>
</tr>
<tr>
<td>B.01</td>
<td>Válvula de paso de alarma</td>
</tr>
<tr>
<td>B.02</td>
<td>Válvula de prueba</td>
</tr>
<tr>
<td>B.03</td>
<td>Válvula retención ¾"</td>
</tr>
<tr>
<td>B.04</td>
<td>Manómetro de agua</td>
</tr>
<tr>
<td>B.05</td>
<td>Válvula en ángulo para manómetro</td>
</tr>
<tr>
<td>B.06</td>
<td>Válvula de bola</td>
</tr>
<tr>
<td>B.07</td>
<td>Orificio restricción 3,2 mm</td>
</tr>
<tr>
<td>B.08</td>
<td>Orificio restricción 6,6 mm</td>
</tr>
<tr>
<td>B.09</td>
<td>Orificio restricción 9,5 mm</td>
</tr>
<tr>
<td>C</td>
<td>Válvula de soseñamiento</td>
</tr>
<tr>
<td>D</td>
<td>Indicador de flujo</td>
</tr>
<tr>
<td>E</td>
<td>Campana eléctrica</td>
</tr>
<tr>
<td>F</td>
<td>Presostato</td>
</tr>
<tr>
<td>G</td>
<td>Motor de agua y gong Modelo F-2, incluyendo:</td>
</tr>
<tr>
<td>G.01</td>
<td>Filtro ¾" línea de alarma</td>
</tr>
<tr>
<td>H</td>
<td>Cámara de retardo Modelo G-1</td>
</tr>
<tr>
<td>I</td>
<td>Circuito de ventilación (opcional)</td>
</tr>
</tbody>
</table>

2.2.1 Sujeto a modificaciones. Imágenes no contractuales.
CONJUNTOS DE SISTEMA DE TUBERÍA MOJADA UL/FM

VALVULA DE ALARMA MODELO J-1 CON TRIM VERTICAL \(^1\)

<table>
<thead>
<tr>
<th>BRECHA/BRIDA</th>
<th>TAMAÑO</th>
<th>DIÁM. TUBERÍA</th>
<th>REFERENCIA</th>
<th>GRUPO PRECIO</th>
<th>PRECIO UNI-TARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>3" x DN80</td>
<td>AS/08235/08633</td>
<td>IVW</td>
<td>1979.00</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>3" x DN80</td>
<td>AS/08108/08633</td>
<td>IVW</td>
<td>1979.00</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>4" x DN100</td>
<td>AS/08232/08634</td>
<td>IVW</td>
<td>2017.00</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>4" x DN100</td>
<td>AS/08109/08634</td>
<td>IVW</td>
<td>2017.00</td>
<td></td>
</tr>
<tr>
<td>ANSI & ANSI &</td>
<td>6" x DN150</td>
<td>AS/08241/08635</td>
<td>IVW</td>
<td>2221.00</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>8" x DN200</td>
<td>AS/08244/08636</td>
<td>IVW</td>
<td>2655.00</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>8" x DN200</td>
<td>AS/08911/08636</td>
<td>IVW</td>
<td>2655.00</td>
<td></td>
</tr>
<tr>
<td>PN10</td>
<td>8" x DN200</td>
<td>AS/12386/08639</td>
<td>IVW</td>
<td>2655.00</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>8" x DN200</td>
<td>AS/12386/08639</td>
<td>IVW</td>
<td>2655.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BRECHA/RANURA</th>
<th>TAMAÑO</th>
<th>DIÁM. TUBERÍA</th>
<th>REFERENCIA</th>
<th>GRUPO PRECIO</th>
<th>PRECIO UNI-TARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>3" x DN80</td>
<td>98 mm</td>
<td>AS/08225/08633</td>
<td>IVW</td>
<td>1979.00</td>
</tr>
<tr>
<td>PN10/16</td>
<td>3" x DN80</td>
<td>98 mm</td>
<td>AS/08525/08633</td>
<td>IVW</td>
<td>1979.00</td>
</tr>
<tr>
<td>ANSI</td>
<td>4" x DN100</td>
<td>114 mm</td>
<td>AS/08239/08634</td>
<td>IVW</td>
<td>2017.00</td>
</tr>
<tr>
<td>PN10/16</td>
<td>4" x DN100</td>
<td>114 mm</td>
<td>AS/08539/08634</td>
<td>IVW</td>
<td>2017.00</td>
</tr>
<tr>
<td>ANSI & ANSI &</td>
<td>6" x DN150</td>
<td>160 mm</td>
<td>AS/08242/08635</td>
<td>IVW</td>
<td>2221.00</td>
</tr>
<tr>
<td>PN10/16</td>
<td>8" x DN200</td>
<td>219 mm</td>
<td>AS/08245/08630</td>
<td>IVW</td>
<td>2655.00</td>
</tr>
<tr>
<td>ANSI</td>
<td>8" x DN200</td>
<td>219 mm</td>
<td>AS/08977/08636</td>
<td>IVW</td>
<td>2655.00</td>
</tr>
<tr>
<td>PN10</td>
<td>8" x DN200</td>
<td>219 mm</td>
<td>AS/12389/08639</td>
<td>IVW</td>
<td>2655.00</td>
</tr>
</tbody>
</table>

RAMURA/RANURA

<table>
<thead>
<tr>
<th>TAMAÑO</th>
<th>DIÁM. TUBERÍA</th>
<th>REFERENCIA</th>
<th>GRUPO PRECIO</th>
<th>PRECIO UNI-TARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3" x DN80</td>
<td>98 mm</td>
<td>AS/08237/08633</td>
<td>IVW</td>
<td>1979.00</td>
</tr>
<tr>
<td>4" x DN100</td>
<td>114 mm</td>
<td>AS/08240/08634</td>
<td>IVW</td>
<td>1979.00</td>
</tr>
<tr>
<td>6" x DN150</td>
<td>160 mm</td>
<td>AS/08243/08635</td>
<td>IVW</td>
<td>1979.00</td>
</tr>
<tr>
<td>8" x DN200</td>
<td>219 mm</td>
<td>AS/08246/08630</td>
<td>IVW</td>
<td>1979.00</td>
</tr>
</tbody>
</table>

COMPONENTES DE SISTEMA DE TUBERÍA MOJADA UL/FM

VÁLVULA DE ALARMA MODELO J-1

<table>
<thead>
<tr>
<th>BRECHA/BRIDA</th>
<th>TAMAÑO</th>
<th>DIÁM. TUBERÍA</th>
<th>REFERENCIA</th>
<th>GRUPO PRECIO</th>
<th>PRECIO UNI-TARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>3" x DN80</td>
<td>08235</td>
<td>IVW</td>
<td>915.04</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>3" x DN80</td>
<td>08108</td>
<td>IVW</td>
<td>915.04</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>4" x DN100</td>
<td>08238</td>
<td>IVW</td>
<td>915.04</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>4" x DN100</td>
<td>08109</td>
<td>IVW</td>
<td>915.04</td>
<td></td>
</tr>
<tr>
<td>ANSI & ANSI &</td>
<td>6" x DN150</td>
<td>08241</td>
<td>IVW</td>
<td>1120.00</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>8" x DN200</td>
<td>08244</td>
<td>IVW</td>
<td>1583.00</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>8" x DN200</td>
<td>08111</td>
<td>IVW</td>
<td>1583.00</td>
<td></td>
</tr>
<tr>
<td>PN10</td>
<td>8" x DN200</td>
<td>12385</td>
<td>IVW</td>
<td>1696.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BRECHA/RANURA</th>
<th>TAMAÑO</th>
<th>DIÁM. TUBERÍA</th>
<th>REFERENCIA</th>
<th>GRUPO PRECIO</th>
<th>PRECIO UNI-TARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI</td>
<td>3" x DN80</td>
<td>08236</td>
<td>IVW</td>
<td>915.04</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>3" x DN80</td>
<td>08535</td>
<td>IVW</td>
<td>915.04</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>4" x DN100</td>
<td>08239</td>
<td>IVW</td>
<td>915.04</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>4" x DN100</td>
<td>08539</td>
<td>IVW</td>
<td>915.04</td>
<td></td>
</tr>
<tr>
<td>ANSI & ANSI &</td>
<td>6" x DN150</td>
<td>08242</td>
<td>IVW</td>
<td>1145.00</td>
<td></td>
</tr>
<tr>
<td>PN10/16</td>
<td>8" x DN200</td>
<td>08245</td>
<td>IVW</td>
<td>1583.00</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>8" x DN200</td>
<td>08877</td>
<td>IVW</td>
<td>1583.00</td>
<td></td>
</tr>
<tr>
<td>PN10</td>
<td>8" x DN200</td>
<td>12389</td>
<td>IVW</td>
<td>1696.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RAMURA/RANURA</th>
<th>TAMAÑO</th>
<th>DIÁM. TUBERÍA</th>
<th>REFERENCIA</th>
<th>GRUPO PRECIO</th>
<th>PRECIO UNI-TARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3" x DN80</td>
<td>08237</td>
<td>IVW</td>
<td>864.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x DN100</td>
<td>08243</td>
<td>IVW</td>
<td>864.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6" x DN150</td>
<td>08304</td>
<td>IVW</td>
<td>1023.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8" x DN200</td>
<td>08346</td>
<td>IVW</td>
<td>1412.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Podrían ser diferentes de acuerdo al diseño, los componentes están sujetos a modificaciones, ilustraciones no contractuales.

[2.2.2]
<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>TAMAÑO</th>
<th>DIÁM. TUBERÍA</th>
<th>REFERENCIA</th>
<th>GRUPO</th>
<th>PRECIO UNITARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIM VÁLVULA DE ALARMA MODELO J-1 (SIN MONTAR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listado UL a 17.2 bar (250 psi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La cámara de retardo y válvula de alarma se pide por separado.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3"DN80</td>
<td></td>
<td>06833</td>
<td>NW</td>
<td>630.00</td>
<td></td>
</tr>
<tr>
<td>4"DN100</td>
<td></td>
<td>06834</td>
<td>NW</td>
<td>668.59</td>
<td></td>
</tr>
<tr>
<td>6"DN150</td>
<td></td>
<td>06835</td>
<td>NW</td>
<td>688.59</td>
<td></td>
</tr>
<tr>
<td>8"DN200</td>
<td></td>
<td>06836</td>
<td>NW</td>
<td>688.59</td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3"DN80</td>
<td></td>
<td>06763</td>
<td>NW</td>
<td>630.00</td>
<td></td>
</tr>
<tr>
<td>4"DN100</td>
<td></td>
<td>06765</td>
<td>NW</td>
<td>689.50</td>
<td></td>
</tr>
<tr>
<td>6"DN150</td>
<td></td>
<td>06767</td>
<td>NW</td>
<td>689.50</td>
<td></td>
</tr>
<tr>
<td>8"DN200</td>
<td></td>
<td>06769</td>
<td>NW</td>
<td>689.50</td>
<td></td>
</tr>
</tbody>
</table>

MONTAJE DE TRIM					
Trim montado.					
Modelo J-1		Todos los tamaños	UL/ FM		
ACCESORIOS PARA SISTEMAS DE TUBERÍA MOJADA UL/ FM					
CÁMARA DE RETARDO MODELO C-1					
No incluido en el Trim					
Entrada	NPT	1/4"DN15	NW	690.49	
Salida	NPT	1/2"DN20	NW	364.59	
TRIM DE VENTILACIÓN					
01973A		IVP		84.55	
DISPOSITIVOS DE ALARMA					
En sección 6					

2.2.3 Sujeto a modificaciones. Imágenes no contractuales.
COMPONENTES INCLUIDOS EN EL TRIM DE J-1

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>TAMANO</th>
<th>DIÁM TUBERIA</th>
<th>REFERENCIA</th>
<th>PRECIO UNITARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válvula de prueba / Válvula de paro de alarma</td>
<td>BSP</td>
<td>1/2"DN15</td>
<td>F250D6050</td>
<td>15.00</td>
</tr>
<tr>
<td>Válvula retención</td>
<td>NPT</td>
<td>1/2"DN20</td>
<td>10870</td>
<td>90.99</td>
</tr>
<tr>
<td>Manómetro de agua 0-16 bar</td>
<td>NPT</td>
<td>3/4"DN8</td>
<td>5WATERSF</td>
<td>51.14</td>
</tr>
<tr>
<td>Válvula en ángulo para manómetro</td>
<td>NPT</td>
<td>3/4"DN8</td>
<td>03852A</td>
<td>15.82</td>
</tr>
<tr>
<td>Válvula de drenaje principal</td>
<td>BSP</td>
<td>1 1/4"DN32</td>
<td>R250D6125</td>
<td>41.77</td>
</tr>
<tr>
<td></td>
<td>BSP</td>
<td>2"DN50</td>
<td>R250D6200</td>
<td>84.36</td>
</tr>
<tr>
<td>Orificio restricción (1/2" Macho/Hembra)</td>
<td>NPT</td>
<td>1/2"DN15</td>
<td>06865A</td>
<td>17.58</td>
</tr>
<tr>
<td>Orificio restricción (1/2"DN15 Macho/Macho)</td>
<td>NPT</td>
<td>1/2"DN15</td>
<td>06860A</td>
<td>15.80</td>
</tr>
<tr>
<td>Orificio restricción (3/4"DN20 Macho/Macho)</td>
<td>NPT</td>
<td>3/4"DN20</td>
<td>02912</td>
<td>15.64</td>
</tr>
</tbody>
</table>

PIEZAS DE REPUESTO PARA SISTEMAS DE TUBERÍA MOJADA UL/FM

REPUESTOS DE GOMAS PARA CLAPETA.

Válvula de alarma Modelo J-1	3/8"DN10	08070	IVP	68.52
4"DN100	08072	IVP	70.90	
6"DN150	08073	IVP	82.27	
8"DN200	08075	IVP	102.30	

Válvula de alarma Modelo F-1/G-1.	2"DN85	02074A	IVP	79.97
4"DN100	02074A	IVP	79.97	
6"DN150	02074A	IVP	73.16	
8"DN200	02074A	IVP	104.44	

JUNTA DE TAPA

Válvula de alarma Modelo J-1	2 1/2"DN85	05794B	IVP	74.49
3"DN100	04794B	IVP	23.11	
6"DN150	04794B	IVP	21.90	
8"DN200	05731C	IVP	27.11	

Válvula de alarma Modelo F-1/G-1.	2 1/2"DN85	02724B	IVP	40.79
3"DN100	02724B	IVP	45.74	
6"DN150	02724B	IVP	45.74	
8"DN200	02724B	IVP	50.98	

KITS DE RESPUESTOS DE JUNTAS DE GOMA

Válvula de alarma Modelo J-1	Modelo F-1	3/8"DN10	08522	IVP	99.03
Modelo F-1	4"DN100	08523	IVP	99.04	
Modelo F-1	6"DN150	08524	IVP	101.63	
Modelo F-1	8"DN200	08525	IVP	119.79	

CONJUNTOS DE REPUESTO DE CLAPETA

Válvula de alarma Modelo J-1	3/8"DN10	08515	IVP	154.24
4"DN100	08519	IVP	157.39	
6"DN150	08520	IVP	191.85	
8"DN200	08521	IVP	402.65	

2.2.4 Sujeto a modificaciones. Imágenes no contractuales.
Kits de Mantenimiento de Válvulas

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tamaño</th>
<th>Diámetro</th>
<th>Referencia</th>
<th>Grupo</th>
<th>Precio Unitario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válvulas de Alarma Modelo F-1 y G-1</td>
<td>2½" DN65</td>
<td>2½"</td>
<td>LL-MKAVF125</td>
<td>IVP</td>
<td>148.23</td>
</tr>
<tr>
<td>Incluye:</td>
<td>4½" DN100</td>
<td>4½"</td>
<td>LL-MKAVF140</td>
<td>IVP</td>
<td>151.56</td>
</tr>
<tr>
<td>- Junta de tapa</td>
<td>6" DN150</td>
<td>6"</td>
<td>LL-MKAVF160</td>
<td>IVP</td>
<td>154.59</td>
</tr>
<tr>
<td>- Goma de clapeta</td>
<td>8½" DN200</td>
<td>8½"</td>
<td>LL-MKAVF180</td>
<td>IVP</td>
<td>169.95</td>
</tr>
<tr>
<td>- Clapeta auxiliar con muelle</td>
<td>2½" DN65</td>
<td>2½"</td>
<td>LL-MKAVEX25</td>
<td>IVP</td>
<td>213.87</td>
</tr>
<tr>
<td>Incluye:</td>
<td>4½" DN100</td>
<td>4½"</td>
<td>LL-MKAVEX40</td>
<td>IVP</td>
<td>231.49</td>
</tr>
<tr>
<td>- Junta de tapa</td>
<td>6" DN150</td>
<td>6"</td>
<td>LL-MKAVEX60</td>
<td>IVP</td>
<td>231.49</td>
</tr>
<tr>
<td>- Goma de clapeta</td>
<td>8½" DN200</td>
<td>8½"</td>
<td>LL-MKAVEX90</td>
<td>IVP</td>
<td>231.49</td>
</tr>
<tr>
<td>Válvulas de Alarma Modelo E</td>
<td>3" DN80</td>
<td>3"</td>
<td>08518</td>
<td>IVP</td>
<td>154.24</td>
</tr>
<tr>
<td>Incluye:</td>
<td>4½" DN100</td>
<td>4½"</td>
<td>08519</td>
<td>IVP</td>
<td>157.39</td>
</tr>
<tr>
<td>- Kit de junta para clapeta</td>
<td>6" DN150</td>
<td>6"</td>
<td>08520</td>
<td>IVP</td>
<td>191.65</td>
</tr>
<tr>
<td>- Junta de la tapa</td>
<td>8½" DN200</td>
<td>8½"</td>
<td>08521</td>
<td>IVP</td>
<td>402.65</td>
</tr>
<tr>
<td>Válvulas de Alarma Modelo J-1/H-1/H-2</td>
<td>3½" DN80</td>
<td>3½"</td>
<td>12505</td>
<td>IVP</td>
<td>371.07</td>
</tr>
<tr>
<td>Incluye:</td>
<td>4½" DN100</td>
<td>4½"</td>
<td>13201</td>
<td>IVP</td>
<td>516.89</td>
</tr>
<tr>
<td>- Kit de junta para clapeta</td>
<td>6½" DN150</td>
<td>6½"</td>
<td>13210</td>
<td>IVP</td>
<td>615.09</td>
</tr>
<tr>
<td>- Junta de la tapa</td>
<td>8½" DN200</td>
<td>8½"</td>
<td>13211</td>
<td>IVP</td>
<td>636.20</td>
</tr>
</tbody>
</table>

Pintura para Retoque de las Válvulas Viking

<table>
<thead>
<tr>
<th>Color</th>
<th>Puente</th>
<th>Peso</th>
<th>Tamaño</th>
<th>Código</th>
<th>Precio Unitario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rojo Viking</td>
<td>Pulverizador</td>
<td>341 g</td>
<td>10033</td>
<td>IVP</td>
<td>67.55</td>
</tr>
</tbody>
</table>

Repuestos para Trím Válvula de Alarma Modelo H-2

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tamaño</th>
<th>Código</th>
<th>Precio Unitario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válvula de prueba y paro de alarma</td>
<td>NPT, 3/8" DN15</td>
<td>06174A</td>
<td>257.66</td>
</tr>
<tr>
<td>Válvula retención</td>
<td>NPT, 3/8" DN20</td>
<td>10870</td>
<td>90.59</td>
</tr>
<tr>
<td>Válvula en ángulo</td>
<td>3½" DN80, 4½" DN100, 6½" DN150</td>
<td>059618, 030383</td>
<td>88.70, 169.51</td>
</tr>
</tbody>
</table>

Repuestos para Válvulas de Alarma Modelo F-1 y G-1

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Tamaño</th>
<th>Código</th>
<th>Precio Unitario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eje</td>
<td>4" & 6"</td>
<td>O0691A</td>
<td>57.59</td>
</tr>
<tr>
<td>Clapeta auxiliar de la válvula</td>
<td>Todos los tamaños</td>
<td>01238A</td>
<td>42.30</td>
</tr>
<tr>
<td>Mangojo auxiliar de la válvula</td>
<td>Todos los tamaños</td>
<td>01237A</td>
<td>29.97</td>
</tr>
<tr>
<td>Bola de nylon</td>
<td>Todos los tamaños</td>
<td>01238A</td>
<td>7.32</td>
</tr>
<tr>
<td>Muñequita</td>
<td>Todos los tamaños</td>
<td>01239A</td>
<td>10.51</td>
</tr>
<tr>
<td>Embudo auxiliar de la válvula</td>
<td>Todos los tamaños</td>
<td>01240A</td>
<td>39.53</td>
</tr>
<tr>
<td>3/8" - 16x3/8 LG. Tornillo ajuste</td>
<td>Todos los tamaños</td>
<td>01274A</td>
<td>10.51</td>
</tr>
</tbody>
</table>

2.2.5 Sujeto a modificaciones. Imágenes no contractuales.
Dispositivos de alarma

ALARMA HIDROMECÁNICA

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>TAMAÑO</th>
<th>DIÁM. TUBERÍA</th>
<th>REFERENCIA</th>
<th>GRUPO PRECIO</th>
<th>PRECIO UNITARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR DE AGUA MODELO F-2</td>
<td></td>
<td></td>
<td>07882</td>
<td>IVW</td>
<td>533.58</td>
</tr>
<tr>
<td>Incluye línea de alarma y filtro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aprobado UL/FM/LPCB/CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCESORIOS PARA MOTOR DE AGUA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eje ajustable</td>
<td></td>
<td></td>
<td>03312B</td>
<td>IVP</td>
<td>65.95</td>
</tr>
<tr>
<td>Longitud 840 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espesor pared hasta 768 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copa de extensión</td>
<td></td>
<td></td>
<td>05957B</td>
<td>IVP</td>
<td>56.55</td>
</tr>
<tr>
<td>Tapa</td>
<td></td>
<td></td>
<td>05820B</td>
<td>IVP</td>
<td>70.66</td>
</tr>
<tr>
<td>Filtro línea de alarma</td>
<td>NPT</td>
<td>¼"</td>
<td>01489A</td>
<td>IVP</td>
<td>116.23</td>
</tr>
</tbody>
</table>

INDICADORES DE FLUJO

- Retardo ajustable hasta 90 seg.
- 2 contactos SPDT

Estandar

<table>
<thead>
<tr>
<th>Estandar</th>
<th>TAMAÑO</th>
<th>REFERENCIA</th>
<th>PRECIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprobación VdS/UL/FM/LPCB</td>
<td>VSR 2"/DN50</td>
<td>VSRF0200</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR 2¼"/DN85</td>
<td>VSRF0250</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR 3"/DN80</td>
<td>VSRF0300</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR 4"/DN100</td>
<td>VSRF0400</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR 6"/DN150</td>
<td>VSRF0600</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR 8"/DN200</td>
<td>VSRF0800</td>
<td>260.96</td>
</tr>
</tbody>
</table>

Estandar

<table>
<thead>
<tr>
<th>Estandar</th>
<th>TAMAÑO</th>
<th>REFERENCIA</th>
<th>PRECIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprobación UL/FM</td>
<td>VSR 5"/DN125</td>
<td>VSRF0500</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR 10"/DN250</td>
<td>VSRF1000</td>
<td>645.04</td>
</tr>
</tbody>
</table>

Estandar

<table>
<thead>
<tr>
<th>Estandar</th>
<th>TAMAÑO</th>
<th>REFERENCIA</th>
<th>PRECIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprobado VdS/UL/FM/LPCB/CE</td>
<td>VSR-CE 2"/DN50</td>
<td>VSR0200CE</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR-CE 2¼"/DN85</td>
<td>VSR0250CE</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR-CE 3"/DN80</td>
<td>VSR0300CE</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR-CE 4"/DN100</td>
<td>VSR0400CE</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR-CE 6"/DN150</td>
<td>VSR0600CE</td>
<td>229.72</td>
</tr>
<tr>
<td></td>
<td>VSR-CE 8"/DN200</td>
<td>VSR0800CE</td>
<td>260.96</td>
</tr>
<tr>
<td>DESCRIPCIÓN</td>
<td>TAMAÑO</td>
<td>DIAM. TUBERÍA</td>
<td>REFERENCIA</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>CAMPANA ELÉCTRICA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 V DC</td>
<td>Ø 6"</td>
<td>PBD024060</td>
</tr>
<tr>
<td></td>
<td>24 V DC</td>
<td>Ø 8"</td>
<td>PBD024080</td>
</tr>
<tr>
<td></td>
<td>120 V AC</td>
<td>Ø 6"</td>
<td>PBA120060</td>
</tr>
<tr>
<td></td>
<td>120 V AC</td>
<td>Ø 8"</td>
<td>PBA120080</td>
</tr>
<tr>
<td>Caja BBK-1</td>
<td></td>
<td></td>
<td>BBK1</td>
</tr>
</tbody>
</table>
6. SISTEMAS DE PROTECCION CONTRA INCENDIOS FIJOS: BOCAS DE INCENDIOS EQUIPADAS. BIES

6.1 INTRODUCCIÓN
6.2 INTRODUCCIÓN A BIES
6.3 NORMATIVA
6.4 INSTALACIÓN (Edificio)
6.5 BOCAS DE INCENDIO EQUIPADAS
 6.5.1 Definición
 6.5.2 Partes y Características
6.6 DESCRIPCION DE LA INSTALACIÓN. DISEÑO Y DIMENSIONADO DE LA RED
 6.6.1 Obligatoriedad de la instalación.
 6.6.2 Tipo de BIE y Condiciones de funcionamiento.
 6.6.3 Red de Tuberías.
 6.6.4 Accesorios.
 6.6.5 Perdidas de carga.
 6.6.6 Accesorios.
6.7 BASES DE CÁLCULO
 6.7.1 Red.
 6.7.2 Simulaciones.
6.8 SISTEMA DE ABASTECIMIENTO.
 6.8.1 Sistema de Abastecimiento de agua.
 6.8.2 Estación de bombeo.
 6.8.3 Autonomía. Dimensionado del depósito.
6.9 SELECCIÓN DE EQUIPOS.
 6.9.1 BIEs: armarios, válvula, manómetro, manguera, lanza y boquilla.
 6.9.2 Grupo de Bombeo.
6.10 PRESUPUESTO
6.1 INTRODUCCION

En el actual proyecto se va a realizar el diseño y dimensionado de una red de BIEs como sistema de protección contra incendios fijos y de tipo activo para el edificio que se nos propone. Para ello dispondremos de toda la normativa vigente que nos condicionará a lo largo en parte del diseño y del dimensionado, para así poder cumplir los requisitos mínimos creados por el estado, empresas o sociedades en pos de la seguridad.

La normativa recoge el uso de los sistemas de BIES como un elemento importante en la PCI de edificios e industrias destinado a la autoprotección, es decir, a ser usado por los propios ocupantes del edificio, en caso de incendios incipientes.

En nuestro caso según el RSCIIEI tenemos un edificio de tipo B con nivel de riego medio como ya se ha visto en otro apartado. Aunque no tanto por el tipo de edificio sino por el nivel de riesgo del mismo nos conllevará a una serie de requisitos como el tipo de BIE a usar. Y este a su vez nos dará las condiciones de servicio y de abastecimiento del mismo.

6.2 INTRODUCCION A LAS BIES.

Definición: La boca de incendio equipada, más conocida por sus siglas BIE, es un equipo completo de protección contra incendios que se dispone fijo en la pared y está conectado a la red de abastecimiento de agua. Incluye dentro de un armario todos los elementos necesarios para su uso: manguera, devanadera, válvula y lanza boquilla.

Ó como la normativa la define a la BIE como un sistema eficaz e inagotable en la protección contra incendios que, por su eficacia y facilidad de manejo, pudiendo ser utilizado directamente por un ocupante, ó dos, de un edificio en la fase inicial de un fuego. Capaces de conservar sus características con el tiempo sin conllevar un mantenimiento excesivo.

Facilidad de uso: (BIE de 25)

Abrir la puerta.
Abrir la llave de paso de agua (válvula).
Desenrollar la manguera.
Sujetar la lanza-boquilla y dirigir el chorro hacia la base del fuego.
Datos técnicos: Su diseño, instalación y mantenimiento están recogidos en los correspondientes reglamentos y normas:
- Norma UNE-EN 671, partes 1, 2 y 3.
- Código Técnico de la Edificación.

- **Instalación:**
 - A menos de 5 m de las salidas de cada sector de incendios.
 - A menos de 50 m de la siguiente BIE más cercana, protegiendo todo el sector.
 - El centro de la BIE, como máximo, a 1,5 m del nivel del suelo.
 - La red de tuberías deberá proporcionar durante una hora, una presión dinámica mínima de 2 bar en la lanza.

- **Mantenimiento:**
 - **Cada 3 meses:** Comprobación de la señalización y libre acceso. Limpieza de los elementos y engrase de los cierres y bisagras.
 - **Cada año:** Comprobación de los componentes, ensayo de la manguera, estanquidad del conjunto y comprobación del manómetro.
 - **Cada 5 años:** Prueba hidroestática de la manguera a 15 kg/cm².

- **Dónde debe instalarse la BIE:**
 La boca de incendio equipada es idónea para instalarse en lugares donde debido a su elevada ocupación o tránsito de personas, se precise un sistema de extinción fácil de usar, eficaz e inagotable, ya que funciona con agua de la red de abastecimiento general.
 - **En instituciones públicas:** Ayuntamientos, consejerías, delegaciones de gobierno, ministerios, comisarías, centros culturales, universidades, bibliotecas y en general, en cualquier edificio público.
 - **En edificios residenciales:** Hoteles, residencias de la tercera edad, residencias de estudiantes, bloques de apartamentos, garajes, y en general, en edificios residenciales de elevada ocupación.
 - **En centros comerciales, de ocio y servicios:** Centros comerciales, centros de ocio, restaurantes, cines, teatros, instalaciones deportivas, parking, oficinas, parques empresariales.
 - **En edificios sanitarios y educativos:** Hospitales, centros de salud, colegios, institutos, universidades, bibliotecas, museos, escuelas infantiles...
 - **En el hogar:** Es muy recomendable instalar una BIE en casas unifamiliares y edificios de comunidades de vecinos: portales, plantas, trasteros y/o cuartos de máquinas.
6.3 NORMATIVA.

- Código Técnico de la Edificación - CTE.

Título:	REAL DECRETO 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
Fecha:	17 de marzo 2006
Revisiones:	Texto modificado por RD 1371/2007, de 19 de octubre (BOE 23/10/2007) y corrección de errores (BOE 25/01/2008)
Ámbito:	España
Fuente:	BOE n. 74 de 28/3/2006[pág. 11816 - 11831]
Estado:	VIGENTE

El Código Técnico de la Edificación (CTE) es el marco normativo español por el que se regulan las exigencias básicas de calidad que deben cumplir los edificios, incluidas sus instalaciones, para satisfacer una serie de requisitos básicos de seguridad y habitabilidad de las personas (tanto las que habitan los edificios como los que no), el bienestar de la sociedad, y la protección del medio ambiente, definidos por la Ley de Ordenación de la Edificación (LOE).

Hace un especial énfasis en la actualización de los valores mínimos regulados en las antiguas Normas Básicas (NBE) para adaptarse a los estándares actuales y en el estudio de las tendencias normativas de vecinos europeos para ajustar la normativa española con la de la Unión Europea.

El CTE está ha estructurado en dos partes bien diferenciadas: en la Parte I se fijan las disposiciones generales de aplicación del CTE, se enuncian las “Exigencias Básicas de Obligado Cumplimiento” para los edificios y se definen los tipos de proyectos y los Documentos Reconocidos. La segunda parte está formada por los llamados “Documentos Básicos” (DB) y en el que se ofrecen soluciones que cumplen las exigencias establecidas en la Parte I, aunque estás no serán las únicas maneras de cumplirlas.

1. Parte I
 2. Parte 2: Documentos Básicos (DB)
 1. DB-SI: Documento Básico de Seguridad contra Incendios
 2. DB-SU: Documento Básico de Seguridad de Utilización
 3. DB-HE: Documento Básico de Ahorro de Energía
 4. DB-SE: Documento Básico de Seguridad Estructural
 5. DB-HS: Documento Básico de Salubridad
 6. DB-HR: Documento Básico de Protección Contra el Ruido

Dentro del CTE trabajamos los aspectos del Documento Basico SI sobre Seguridad Contra Incendios:
Se trata de uno de los seis Documentos Básicos (DB) que forman el Código Técnico de la Edificación CTE. En el presente documento se especifican las exigencias básicas relativas a la seguridad en caso de incendio así como los valores mínimos de calidad y procedimientos cuyo cumplimiento asegura su satisfacción.

Ámbito de aplicación: No será de aplicación en edificios, establecimientos y zonas de uso industrial a los que les sea de aplicación el Reglamento de Seguridad Contra Incendios en los Establecimientos Industriales (RSCIEI), pues dicho reglamento es más restrictivo y asegura el cumplimiento de las exigencias enunciadas en el CTE.

- **Reglamento de Instalaciones de Protección contra Incendios - RIPCI.**

En 1993 se publicó el Reglamento de Instalaciones de Protección Contra Incendios (RD 1942/1993), que regula, entre otras cosas: las características de fabricación y de instalación de los sistemas de Bocas de Incendio Equipadas, BIEs.

Es objetivo de esta ordenanza es establecer y definir las condiciones que deben cumplir los aparatos, equipos y sistemas, así como su instalación y mantenimiento empleados en la protección contra incendios.
En el apéndice 1 encontraremos se especifican las características que deben reunir los aparatos, equipos y sistemas, así como sus partes y componentes, y la instalación de los mismos. Dentro del cual elabora los “Sistemas de Incendio Equipadas”, en el punto 7, donde se establecen los siguientes requisitos:

1.- Los sistemas de bocas de incendio equipadas estarán compuestos por una fuente de abastecimiento de agua, una red de tuberías para la alimentación de agua y las bocas de incendio equipadas (BIE) necesarias, que podrán ser de los tipos BIE de 45 mm y BIE de 25mm.

2.- Las bocas de incendio equipadas deberán cumplir lo establecido en las normas UNE-EN 671-1 y UNEEN 671-2.

3.- Las BIE deberán montarse sobre un soporte rígido de forma que la altura de su centro quede como máximo a 1,50 m sobre el nivel del suelo o a más altura en BIEs de 25 mm, siempre que la boquilla y la válvula de apertura estén situadas a la altura citada.

4.- Las BIE se situaran, siempre que sea posible, a una distancia máxima de 5 m de las salidas de cada sector de incendio.

5.- La totalidad de la superficie del sector de incendio en que estén instaladas las BIEs debe quedar cubierta, considerando como radio de acción de esta la longitud de su manguera (20m) incrementada en 5. Siendo así la separación máxima entre cada BIE y su más cercana será de 50 m.

6.- La distancia desde cualquier punto del local protegido hasta la BIE más próxima no deberá exceder de 25 m.

7.- Se deberá mantener alrededor de cada BIE una zona libre de obstáculos.

8.- La red de tuberías deberá proporcionar, durante una hora, como mínimo, una presión dinámica mínima de 2 bar en el orificio de salida de cualquier BIE.

9.- Las condiciones establecidas de presión caudal y reserva de agua deberán estar adecuadamente garantizadas.

10.- El sistema de BIE se someterá, antes de su puesta en servicio, a una prueba de estanquidad y resistencia mecánica, sometiendo a la red a una presión estática igual a la máxima de servicio y como mínimo a 980 kPa (10 Kg/cm2), manteniendo dicha presión a prueba durante dos horas, como mínimo, no debiendo aparecer fugas en ningún punto de la instalación.

- Reglamento de Seguridad contra Incendios en los Establecimientos Industriales - RSCIEI.
Este reglamento sirve como guía técnica de aplicación y tiene por objeto establecer y definir los requisitos que deben satisfacer y las condiciones que deben cumplir los establecimientos e instalaciones de uso industrial para su seguridad en caso de incendio, para prevenir su aparición y para dar la respuesta adecuada, en caso de producirse, limitar su propagación y posibilitar su extinción con el fin de anular o reducir el incendio, para extinguirlo, y minimizar los daños o pérdidas que pueda generar a personas o bienes.

Su ámbito de aplicación son los establecimientos industriales y se entenderán como tales:

- Las industrias, según el artículo 3.1 de la Ley 21/1992, de 16 de julio, de Industria.
- Los almacenamientos industriales.
- Los talleres de reparación y los estacionamientos de vehículos destinados al servicio de transporte de personas y transporte de mercancías.

También se aplicará a los servicios auxiliares o complementarios de las actividades anteriores y a cualquier tipo de establecimiento cuando su carga de fuego total sea igual o superior a tres millones de Mega julios (MJ).

Pudiéndose clasificar estos edificios, según las diversas configuraciones y ubicaciones que pueden tener, en 5 tipos: A, B, C, D y E. Y luego a su vez pudiéndolos clasificar según su nivel de riesgo intrínseco, atendiendo, según áreas o sectores y finalmente al edificio, a los algunos criterios como:

- **QS** = densidad de carga de fuego, ponderada y corregida, del sector o área de incendio, en MJ/m² o Mcal/m².
- **A** = superficie construida del sector de incendio o superficie ocupada del área de incendio, en m².
- **qi** = poder calorífico, en MJ/kg o Mcal/kg, de los combustibles que existen en el sector de incendio.
- **Ci** = coeficiente de peligrosidad por combustibilidad, de cada uno de los combustibles que existen en el sector de incendio.
- **Qe** = densidad de carga de fuego, ponderada y corregida, del edificio industrial, en MJ/m² o Mcal/ m².

(Los valores necesarios para estos parámetros los encontraremos en las tablas que proporciona la norma)

El Anexo III será el encargado de poner en juego los requisitos de las instalaciones de protección contra incendios de los establecimientos industriales, como:

- Los sistemas de detección y comunicación de alarma.
- Sistemas de abastecimiento de agua, para suministrar a los sistemas PCI. Indicando los caudales y reservas mínimos de agua cuando se unen más de uno de estos sistemas en un edificio.
- Sistemas de hidrantes exteriores, extintores, bocas de incendios equipadas, columna seca, rociadores, agua pulverizada, espumas y polvos de extinción, alumbrado y señalización.
Siendo el punto 9 del anexo III, donde tratará los **sistemas de bocas de incendio equipadas**. Con los siguientes puntos:

1. **Se instalarán sistemas de bocas de incendio equipadas en los sectores de incendio de los establecimientos industriales si:**
 a) Están ubicados en edificios de tipo A y su superficie total construida es de 300 m² o superior.
 b) **Están ubicados en edificios de tipo B, su nivel de riesgo intrínseco es medio y su superficie total construida es de 500 m² o superior. (Nuestro caso)**
 c) Están ubicados en edificios de tipo B, su nivel de riesgo intrínseco es alto y su superficie total construida es de 200 m² o superior.
 d) Están ubicados en edificios de tipo C, su nivel de riesgo intrínseco es medio y su superficie total construida es de 1000 m² o superior.
 e) Están ubicados en edificios de tipo C, su nivel de riesgo intrínseco es alto y su superficie total construida es de 500 m² o superior.
 f) Son establecimientos de configuraciones de tipo D o E, su nivel de riesgo intrínseco es alto y la superficie ocupada es de 5.000 m² o superior.

2. **Tipo de BIE y necesidades de agua.**
 Además de los requisitos establecidos en el Reglamento de instalaciones de protección contra incendios, para su disposición y características se cumplirán las siguientes condiciones hidráulicas:

 (*Se admitirá BIE 25 mm como toma adicional del 45mm, y se considerará, a los efectos de cálculo hidráulico, como BIE de 45 mm.)*

<table>
<thead>
<tr>
<th>NIVEL DE RIESGO INTRÍNSECO DEL ESTABLECIMIENTO INDUSTRIAL</th>
<th>TIPO DE BIE</th>
<th>SIMULTANEIDAD</th>
<th>TIEMPO DE AUTONOMÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bajo</td>
<td>DN 25 mm</td>
<td>2</td>
<td>60 min</td>
</tr>
<tr>
<td>Medio</td>
<td>DN 45 mm*</td>
<td>2</td>
<td>60 min</td>
</tr>
<tr>
<td>Alto</td>
<td>DN 45 mm*</td>
<td>3</td>
<td>90 min</td>
</tr>
</tbody>
</table>

 - **Las BIE de 45 mm sólo deberían ser utilizadas por personal debidamente formado.**
 - El caudal unitario será el correspondiente a aplicar a la presión dinámica disponible en la entrada de la BIE, cuando funcionen simultáneamente el número de BIE indicado, el factor "K" del conjunto, proporcionado por el fabricante del equipo. Los diámetros equivalentes mínimos serán 10 mm para BIE de 25 y 13 mm para las BIE de 45 mm.
 - Se deberá comprobar que la presión en la boquilla no sea inferior a 2 bar ni superior a 5 bar, y, si fuera necesario, se dispondrán dispositivos reductores de presión.
Norma UNE-EN 671, partes 1, 2 y 3.

Fecha	Noviembre 2001
Ámbito:	España
Fuente:	Asociación Española de Normalización y Certificación - AENOR
Texto completo:	www.aenor.es
Estado:	VIGENTE

En particular nos centraremos en la parte 2 (UNE-EN 671-2) para **Bocas de incendio equipadas con mangueras planas**, también conocidas como BIEs de 45.

Esta norma europea establece las exigencias y métodos de ensayo de fabricación y de rendimiento para las bocas de incendio equipadas con mangueras planas (BIE de 45) destinadas a la instalación en edificios y otras instalaciones industriales, conectadas permanentemente a una red de abastecimiento de agua y para ser utilizadas por los ocupantes de los mismas.

Así como detalles técnicos de diseño, partes, funcionamiento y condiciones de servicio que debe tener, detalles como:

- Instalación en armarios, empotrados o de superficie, con soporte de manguera tipo devanadera, enrollada o plegada.
- Diámetros, longitudes y tipos de mangueras y racores válidos.
- Lanza-boquillas con posiciones de cierre, agua pulverizada y chorro compacto.
- Válvula de cierre de abastecimiento de agua, armarios con puertas, con cierre ó no, ó acristalados. Pudiendo también alojar extintores.
- Los materiales tendrán que ser resistentes a la corrosión y a la presión.
- Resistencia hidráulica de las mangueras a las presiones de servicio máxima, de prueba y de rotura. Así como pruebas de estanqueidad.
- Caudales mínimos de servicio para diámetro de boquilla, presión y coeficiente de pérdidas de la BIE en el manómetro.
- Alcance eficaz del chorro, así como, ángulo de pulverización.
- Y por último colores, símbolos, marcado e instrucciones.

- **Norma UNE 23410-1.** Lanzas-loquilla de agua para la lucha contra incendios
- **Norma UNE 23500.** Sistemas de Abastecimiento de agua contra incendios.
- **Centro Nacional de Prevención de Daños y Perdidas - CEPREVEN:**
CEPREVEN es una Asociación que elabora sus Reglas y Especificaciones Técnicas sobre Instalaciones de Seguridad Contra Incendios en base a Equipos Técnicos propios, Comisiones Técnicas en las que colaboran los expertos más acreditados en cada materia a tratar, o mediante la traducción de especificaciones de reconocida solvencia.

- **R.T.2-ABA:** Regla Técnica de Abastecimientos de Agua Contra Incendios.
- **R.T.2-BIE:** Regla Técnica para instalaciones de Bocas de Incendio Equipadas.

Normas UNE que aquí se citan o para su consulta:

<table>
<thead>
<tr>
<th>Norma UNE</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNE 23.007/1 1996.</td>
<td>Sistemas de detección y alarma de incendio. Parte 1: Introducción.</td>
</tr>
<tr>
<td>UNE 23.007/2 1998</td>
<td>Sistemas de detección y de alarma de incendio. Parte 2: Equipos de control e indicación.</td>
</tr>
<tr>
<td>UNE 23.007/5 1978</td>
<td>Componentes de los sistemas de detección automática de incendios. Parte 5: Detectores de calor. Detectores puntuales que contienen un elemento estático.</td>
</tr>
<tr>
<td>UNE 23.007/7 1993.</td>
<td>Componentes de los sistemas de detección automática de incendios. Parte 7: Detectores puntuales de humos. Detectores que funcionan según el principio de difusión o transmisión de la luz o de ionización.</td>
</tr>
<tr>
<td>Código de Norma</td>
<td>Descripción</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>UNE 23.500 1990.</td>
<td>Sistemas de abastecimiento de agua contra incendios.</td>
</tr>
<tr>
<td>UNE 23.500 1990.</td>
<td>Sistemas de abastecimiento de agua contra incendios.</td>
</tr>
</tbody>
</table>
6.4 INSTALACIÓN (Edificio)

Se nos entabla en un establecimiento industrial formado por un edificio de 4 plantas (1 planta bajo rasante) de 1500 m2 por planta. Se proporcionan los siguientes datos generales del edificio:

- **Planta bajo rasante (-1).** Uso aparcamiento y sala de máquinas (zona de aparcamiento diáfana, sala de control y sala de equipos y máquinas para todo el establecimiento). El aparcamiento tiene capacidad para 50 vehículos. Aseos.

- **Planta baja (0).** Planta de proceso y manipulación de explosivos, munición y armamento. Taller mecánico con 5 máquinas herramienta y 2 cabinas de soldadura. Aseos.

- **Planta 1ª (1).** Almacén de uniforme militar y equipamiento de seguridad personal (botas, chalecos anti-bala, paracaídas, etc.). Zona de comedor militar y duchas (capacidad 30 personas). Aseos.

- **Planta 2ª (2).** Uso administrativo y de gestión (5 despachos individuales, 2 despachos comunes de 5 puestos, almacen de material, sala de servidores, sala de reuniones y aseos).
Datos con los que se realizan los siguientes planos:

6.5 BOCAS DE INCENDIO EQUIPADAS.

6.5.1 Definición.

En el reglamento de instalaciones vienen recogidos los Sistemas de Bocas de Incendio equipadas (BIE) como un conjunto de elementos necesarios para transportar y proyectar agua desde un punto fijo de una fuente de abastecimiento de agua por una red de tuberías hasta el lugar del fuego, incluyendo la propia BIE, los elementos de soporte, medición de presión y protección del conjunto.

6.5.2 Partes y características.

a. Lanza-Boquilla.

Componente fijado al extremo de la manguera, utilizado para dirigir y controlar el flujo de agua.

Deberá ser de un material resistente a los esfuerzos mecánicos y a la corrosión. La lanza permitirá la apertura y cambio de caudal al paso del agua, mientras que la boquilla deberá poder trabajar de tres formas: chorro, agua pulverizada y cortina de protección. Este último como sistema de resguardo de la persona que lo maneja.
Los diámetros de orificio de la lanza-boquillas mínimos equivalentes son de 10mm y de 13mm en BIE de 25 y 45 respectivamente según RSCIEI. Mientras que la norma UNE 23410-1 recoge las características hidráulicas de las boquillas.

b. Manguera

Es un tubo (flexible ó semirrígido) provisto en sus extremos de racores que permiten su conexión a la lanza y a la válvula, ó a otra manguera.

En BIEs de 45 se llama flexible plana, ya que su sección no es circular hasta que no está sometida a presión. Se fabrican varias longitudes pero se exigen 20m. Lo rige la norma UNE 23.091, son de tejido sintético y revestimiento interior para soportar 15 bar de presión de prueba estancan.

En BIEs de 25 se llama semirrígida, ya que conserva su sección circular esté o no sometida a presión. Se fabrican varias longitudes pero se exigen 20m. Lo rige la norma UNE-EN 694, no tienen recubrimiento exterior y deben soportar 24 bar de presión de prueba estancan.

c. Racor.

Pieza metálica normalizada que posibilita el acoplamiento rápido de mangueras, lanzas y válvulas. Los rige la norma UNE 23.400 y en España se suele usar los de tipo Barcelona.

d. Válvula.

Dispositivo que permite la apertura y cierre del paso del agua a la manguera. Toda BIE deberá estar dotadas con una válvula de cierre manual de abastecimiento que será del tipo de asiento plano o de otro tipo de apertura lenta para BIE de 45, con rosca de 1½”, y de tipo globo ó apertura rápida, tanto manuales como automáticas, en BIEs de 25 con rosca de 1”.

e. Manómetro

Instrumento para medir la presión de la red. Si existe, deberá situarse antes asiento de la válvula en BIEs de 45. Deberá ser capaz de medir presiones entre 0 y 1,25 veces la presión máxima de trabajo.

Será de escala entre 0 y 16 bar, como mínimo, y con diámetros de esfera mínimo de 50 mm.

f. Soporte de manguera y Devanadera.

Elemento de sujeción de la manguera plegada ó enrollada, sí es en una devanadera gira alrededor de un brazo, que permite su extensión rápida y eficaz.

g. Armario.

Elemento destinado a contener la BIE. Consiste en una caja de protección contra el deterioro, ambiental o provocado, de los elementos que componen la BIE y que así mismo sirve de fijación del soporte, manguera y lanza.
Tendrán un sistema de apertura que permitirá la revisión periódica de la BIE, tales como el sistema de fácil rotura (BIEs con frontal de vidrio) y de fácil apertura (con puerta ciega). Y este podrá ser empotrado o de superficie

6.6 DESCRIPCION DE LA INSTALACIÓN. DISEÑO Y DIMENSIONADO DE LA RED.

6.6.1 Obligatoriedad de la instalación.

Tenemos un edificio de tipo industrial por lo que el CTE en su documento SI apartado 4 no nos regula ni obliga a la colocación de ninguna boca de incendio equipada, delegando está potestad al RSCIEI. Real Decreto que clasifica a nuestro edificio, en el anexo III apartado 9.1, dentro del tipo B y que conjunto al nivel de riego intrínseco del edificio de grado medio y una superficie mayor que 500m² nos obliga a instalar este sistema fijo de protección contra incendios.

Será a partir de ahora cuando el RIPCI y el RSCIEI nos impondrán los distintos límites para la adecuación de nuestro sistema a los cánones de seguridad.

6.6.2 Tipo de BIE y Condiciones de funcionamiento.

Una vez tenemos claro la imposición de la instalación de estos equipos debemos saber qué equipo es el más adecuado para nuestro caso. Para el cual tanto el RIPCI (apéndice 1, punto 7) como en el RSCIEI (Anexo III, punto 9.2) nos imponen la siguiente condición hidráulica de que “la red de tuberías deberá proporcionar una autonomía, durante una hora, como mínimo, en la hipótesis de funcionamiento simultáneo de las dos BIE hidráulicamente más desfavorables”. Pero que en el caso del RSCIEI especifica más ampliamente asignando también el tipo de BIE con la siguiente tabla:

<table>
<thead>
<tr>
<th>NIVEL DE RIESGO INTRÍNSECO DEL ESTABLECIMIENTO INDUSTRIAL</th>
<th>TIPO DE BIE</th>
<th>SIMULTANEIDAD</th>
<th>TIEMPO DE AUTONOMÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAJO</td>
<td>DN 25 mm</td>
<td>2</td>
<td>60 min</td>
</tr>
<tr>
<td>MEDIO</td>
<td>DN 45 mm*</td>
<td>2</td>
<td>60 min</td>
</tr>
<tr>
<td>ALTO</td>
<td>DN 45 mm*</td>
<td>3</td>
<td>90 min</td>
</tr>
</tbody>
</table>

(*Se admitirá BIE 25 mm como toma adicional del 45mm, y se considerará, a los efectos de cálculo hidráulico, como BIE de 45 mm.)

Como suponemos que en el edificio habrá personal cualificado, ya que el edificio, aunque industrial, es de carácter militar. Instalaremos BIEs de 45 en todo el edificio, como especifica el RSCIEI (Anexo III, punto 9.2) para el uso por el personal previamente instruido, excepto en la planta administrativa donde se colocarán BIEs de 25 con toma adicional de 45, por su mayor facilidad de uso y no necesitar personal formado.
Para estas BIEs de 25, como dice la norma, la red se dimensionará como si fueran de 45. También se recomienda la manipulación de las BIEs de 45 por 2 personas.

Para las **condiciones de funcionamiento** podemos decir que se crea un compendio de pautas ó reglas para delimitar estas condiciones. Condiciones en las que no entra la obligatoriedad de que la presión de salida en la boquilla sea de 3.5 bar, aunque sea este el valor normalmente fijado.

- Empezaremos por el RIPCI, que nos exige una presión mínima de 2 bar en las boquillas de las 2 BIEs más desfavorables. Mientras que el RSCIEI nos delimita el rango completo de presiones entre 2 y 5 bar en la boquilla de las BIEs, instalando reductores de presión si fuera necesario.

- Los diámetros equivalentes de boquilla como ya se ha dicho son 10 mm para las BIEs de 25 y de 13 mm para las de 45, según RSCIEI. Esto nos sirve para poder saber el factor K necesario para calcular la pérdida de carga de la BIE de la norma UNE 671. Teniendo valores de K = 42 y K = 85 para BIEs de 25 y 45 respectivamente.

- Con estos valores: 2 bar en el orificio de salida y estos factores K demostraré, como refutan algunos obras y manuales repasados por mí, que utilizando estos valores no podemos llegar a los habituales 100 l/m en BIEs de 25 y 200 l/m en BIEs de 45 que ninguna normativa de obligado cumplimiento.

- Lo más parecido a estas exigencias de 3,5 bar en boquillas, más los 100 l/m en BIEs de 25 ó 200 l/m en BIEs de 45, son las recomendaciones en la normativa de CEPREVEN R.T.2-BIE, donde nos indican que en BIEs de 45 con una presión mínima en manómetro de 5.5 bar (3,5 bar en boquilla) y un K = 85, se garantiza un caudal de 198 l/m. Ó con BIEs de 25, presión mínima en manómetro de 5.7 bar (3,5 bar en boquilla) y un K = 42, se garantiza un caudal de 100 l/m.

- También tenemos como referencia las tablas de la UNE 671 para caudales mínimos y coeficientes mínimos según las presión y el tamaño de orificio:

<table>
<thead>
<tr>
<th>Diámetro del orificio de la boquilla o diámetro equivalente (mm)</th>
<th>Caudal mínimo Q (l/min)</th>
<th>Coeficiente K (véase la nota)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P = 0.2 MPa</td>
<td>P = 0.4 MPa</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
<td>56</td>
</tr>
<tr>
<td>9</td>
<td>46</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>59</td>
<td>84</td>
</tr>
<tr>
<td>12</td>
<td>90</td>
<td>128</td>
</tr>
</tbody>
</table>

NOTA – El caudal Q a la presión P se obtiene por la ecuación $Q = K \sqrt{P}$ donde Q se expresa en litros/minuto y P en megapascals.
Así que podemos decir que el valor de las presiones mínimas y el coeficiente de caudal de una boquilla condicionarán el caudal circulante por una BIE. Los valores de K_{boq} los podemos obtener de la norma UNE 23410-1, y que según la siguiente ecuación:

$$Q = K_{boq} \sqrt{P_{boq}}$$

para una presión mínima $P_{\text{min}} = 2 \text{ bar}$ en boquilla y coeficientes K_{boq} de 67.5 y 117.7 respectivamente obtenemos un caudal mínimo Q_{min} de 95 lpm y 151.2 lpm. Estos caudales metidos en la ecuación de la BIE, con sus respectivos K_{BIE}, nos proporcionarán las presiones mínimas en manómetros:

$$Q = K_{BIE} \sqrt{P_{\text{man}}}$$

siendo estas iguales a $P_{\text{man, min}} (42) = 5.17 \text{ bar}$ y $P_{\text{man, min}} (85) = 4.41 \text{ bar}$.

También podemos con este método sacar las presiones máximas que nos imponen el RSCIEI como 5 bar en el orificio de salida. Obteniendo los caudales máximos:

BIE de 25: $Q_{\text{max}} = K_{boq} \sqrt{P_{boq}} = 67.5 \sqrt{5} = 150 \text{ lpm}$

BIE de 45: $Q_{\text{max}} = K_{boq} \sqrt{P_{boq}} = 117.7 \sqrt{5} = 263 \text{ lpm}$

E igualmente podemos obtener las presiones máximas de servicio:

BIE de 25: $P_{\text{man, max}} = \left(\frac{1}{K_{BIE}} \cdot Q_{\text{max}} \right)^2 = \left(\frac{1}{42} \cdot 150 \right)^2 = 12.75 \text{ bar}$

BIE de 45: $P_{\text{man, max}} = \left(\frac{1}{K_{BIE}} \cdot Q_{\text{max}} \right)^2 = \left(\frac{1}{85} \cdot 263 \right)^2 = 9.57 \text{ bar}$

Para nuestro caso tomaremos un valor intermedio entre la mínima (2 bar) y las máxima (5 bar), estimándolo a partir de que queremos un caudal mínimo de 200 lpm en cada una de las 2 BIEs más desfavorables, ya que dimensionaremos la red para BIEs de 45, con un coeficiente de $K_{BIE} = 85$. Obteniendo las siguientes presiones de servicio:

$$P_{\text{boq}} = \left(\frac{1}{K_{boq}} \cdot Q_{\text{max}} \right)^2 = \left(\frac{1}{117.7} \cdot 200 \right)^2 = 2.9 \text{ bar}$$

<table>
<thead>
<tr>
<th>Diámetro del orificio de la boquilla condensadora, mm</th>
<th>Caudal mínimo Q l/min</th>
<th>Coeficiente K (véase la nota)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P=0.2 MPa</td>
<td>P=0.4 MPa</td>
</tr>
<tr>
<td>9</td>
<td>66</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>78</td>
<td>110</td>
</tr>
<tr>
<td>11</td>
<td>93</td>
<td>131</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>140</td>
</tr>
<tr>
<td>13</td>
<td>120</td>
<td>170</td>
</tr>
</tbody>
</table>

NOTA: El caudal Q a la presión P se obtiene por la ecuación $Q = K \sqrt{P}$, donde Q se expresa en litros/minuto y P en megapascales.
\[p_{\text{man}} = \left(\frac{1}{K_{BIE}} \cdot Q_{\text{max}} \right)^2 = \left(\frac{1}{85} \cdot 200 \right)^2 = 5.5 \text{ bar} \]

Y manteniendo el resto de presiones y caudales entre los límites establecidos.

6.6.3 Red de Tuberías.

a. Distribución.

La red de BIEs estará distribuida por el edificio gracias a una red de tuberías de abastecimiento de agua que estará formada por un anillo principal, como recomienda CEPREVEN en su norma R.T.2 ABA sobre Abastecimiento, que estará encerrado en los 1500m2 de perímetro de la planta baja rasante (Planta -1).

Anillo que se procura realizar para que exista un equilibrio hidráulico y además se pueda sectorizar fácilmente en caso de avería y del cual saldrán distintas columnas que subirán a hasta los pisos superiores de manera se puedan distribuir las BIEs en los distintos puntos de cada planta de manera que puedan cubrir completamente toda la superficie de todas las plantas del edificio.

Para ello se ubicaran siguiendo las siguientes pautas, como indica el RIPCI:

1. - Las BIE deberán montarse sobre un soporte rígido de forma que la altura de su centro quede como máximo a 1,50 m.

2. - Las BIE se situaran, siempre que sea posible, a una distancia máxima de 5 m de las salidas de cada sector de incendio.

3. - La totalidad de la superficie del sector de incendio en que estén instaladas las BIEs debe quedar cubierta, considerando como radio de acción de esta la longitud de su manguera (20m) incrementada en 5m.

4. - La separación máxima entre cada BIE y su más cercana será de 50 m.

5. - La distancia desde cualquier punto del local protegido hasta la BIE más próxima no deberá exceder de 25 m.

6. - Se deberá mantener alrededor de cada BIE una zona libre de obstáculos.
Quedando una distribución tal como esta:
b. Tipo de Tubería.

Generalmente en la red de tuberías se admiten materiales como la fundición dúctil y el acero, convenientemente protegido frente a la corrosión exterior, como el acero galvanizado. Aunque con la debida justificación se pueden utilizar otros materiales.

Se suelte usar el acero que tiene una rugosidad 0.15mm en el sistema Darcy-Weisbach, aunque para cálculos también se usa 0.2mm para calcular el posible envejecimiento.

Las tuberías que alimentan una BIE de 45 suelen realizarse en de 1½” (40 mm diámetro equivalente) y de 1” (25 mm) una de 25, mientras que cuando una tubería alimenta 2 ó más BIEs son de 2” (50 mm) y 1½” (40 mm) según el tipo de BIE respectivamente.

6.6.4 Accesorios.

Como en toda red de distribución por tuberías son necesarios adaptadores y piezas para poder amoldar la red a las necesidades. En nuestro caso se utilizarán válvulas de seccionamiento, codos, tés, cruces y reducciones. En particular:

- Codos de 90º de 1½” y de 2”.
- Tés de 2”.
- Cruces de 2”.
- Reducciones de 2” a 1½”.
- Válvula de seccionamiento de 2”.

81
6.6.5 Perdidas de carga.

Las pérdidas de carga de la red se llevarán a cabo con el software de simulación de Epanet 2.0, pero este no puede tener en cuenta la pérdida de los accesorios así que se los introduciremos como longitudes equivalentes de la normativa o de las tablas del fabricantes.

<table>
<thead>
<tr>
<th>Tabla 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud equivalente de accesorios y válvulas</td>
</tr>
<tr>
<td>Accesorios y válvulas</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Codo roscado 90° (normalizado)</td>
</tr>
<tr>
<td>90° Codo soldado</td>
</tr>
<tr>
<td>(d < 1.5)</td>
</tr>
<tr>
<td>Codo roscado 45° (normalizado)</td>
</tr>
<tr>
<td>Te roscado normal o cruz (con cambio de sentido del flujo)</td>
</tr>
<tr>
<td>Válvula de compuerta - inmediatamente</td>
</tr>
<tr>
<td>Válvula de alarma o retención (con clapeta)</td>
</tr>
<tr>
<td>Válvula de alarma o retención (con seta)</td>
</tr>
<tr>
<td>Válvula de manopla</td>
</tr>
<tr>
<td>Válvula de ensucia</td>
</tr>
</tbody>
</table>

6.7 BASES DE CÁLCULO.

Ahora realizaremos unas simulaciones sobre la red prediseñada para obtener los posibles resultados de funcionamiento de la misma. Esto los realizaremos con el software de cálculo y simulación Epanet. Con los que podremos realizar un estudio completo de la red, viendo presiones y caudales en cualquier punto.

Para ello tendremos que tener en cuenta cómo trabaja dicho software para adaptar los parámetros adecuadamente. Parámetros como:

- Caudales: \(Q \) en \([\text{l/s}]\) o \([\text{l/s}]\) litros por segundo
- Presiones: \(P \) en \([\text{mca}]\) metros de columna de agua
- Coeficiente: \(K \), es adimensional

K es adimensional, pero nuestro caso para BIEs de 45 está en referencia a litros por minuto \([\text{l/min}]\) en caudales y bar en presiones. Por lo que \(K_{BIE} = 85 \) debemos convertirlo.

\[
Q[\text{lpm}] = K_{BIE} \sqrt{P_{\text{man}}[\text{bar}]}
\]

Podemos decir que las unidades del coeficiente son \(K_{BIE} [\frac{\text{lpm}}{\sqrt{\text{bar}}}] \)
Parámetros de la red:

- Caudal Mínimo: $200\ [lpm] = 3,4\ [lps]$
- Presión en Manómetro: $5,5\ [bar] = 56,1\ [mca]$
- Coeficiente K: $K'_{BIE} = 0,4436$
- Rugosidad Líneas: $R = 0,15\ [mm]$

Pasamos a dibujar e introducir los datos en el programa:
Longitudes + Longitudes equivalentes por perdidas de accesorios.

6.7.2 Simulaciones.

Se va a realizar el estudio de las 2 BIEs más desfavorables. Para el sistema distribuido por el edificio y una misma curva característica de impulsión (CURVA: Q = 15 lps y P = 50 mca) se pueden dar 2 opciones:

a) Las 2 BIEs más alejadas en la columna más alejada:
b) Las BIEs más alejadas de las 2 columnas más alejadas:

Podemos observar que para una misma curva de impulsión en la primera simulación el grupo de bombeo solo es capaz de meter $6,03 \text{lps}$ a una presión de $66,17 \text{ mca}$ y en la segunda $6,10 \text{lps}$ a $66,09 \text{ mca}$. Por lo que es el primer caso el más desfavorable.

Ajustamos la curva del sistema de impulsión para obtener los $3,4 \text{lps}$ mínimos que imponemos al sistema en las BIEs más desfavorables obteniendo la siguiente simulación. Se van probando varias configuraciones hasta encontrar la más propicia.

c) Curva de la bomba:

<table>
<thead>
<tr>
<th>ID Curva</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOMBA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de Curva</th>
<th>Ecuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOMBA</td>
<td>$Altura = 66,57 - 0,05417(Caudal)^{-2}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caudal</th>
<th>Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>65</td>
</tr>
</tbody>
</table>
d) Caudales mínimos:

Los datos obtenidos de la simulación:

<table>
<thead>
<tr>
<th>ID Nudo</th>
<th>Cota (m)</th>
<th>Demanda (LPS)</th>
<th>Presión (m)</th>
<th>ID Nudo</th>
<th>Cota (m)</th>
<th>Demanda (LPS)</th>
<th>Presión (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embalse</td>
<td>0</td>
<td>-7.00</td>
<td>0.00</td>
<td>Conexión C2.02</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión B1</td>
<td>-2.80</td>
<td>0.00</td>
<td>1.99</td>
<td>Conexión C2.01</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión B2</td>
<td>-2.80</td>
<td>0.00</td>
<td>86.01</td>
<td>Conexión C2.02</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión B3</td>
<td>-2.80</td>
<td>0.00</td>
<td>85.84</td>
<td>Conexión C2.03</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión A1</td>
<td>-0.20</td>
<td>0.00</td>
<td>81.47</td>
<td>Conexión C2.04</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión A2</td>
<td>-0.20</td>
<td>0.00</td>
<td>80.98</td>
<td>Conexión C2.05</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión A3</td>
<td>-0.20</td>
<td>0.00</td>
<td>79.81</td>
<td>Conexión C2.06</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión A4</td>
<td>-0.20</td>
<td>0.00</td>
<td>77.02</td>
<td>Conexión C2.07</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión A5</td>
<td>-0.20</td>
<td>0.00</td>
<td>74.77</td>
<td>Conexión C2.08</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión A6</td>
<td>-0.20</td>
<td>0.00</td>
<td>74.77</td>
<td>Conexión C2.09</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión A7</td>
<td>-0.20</td>
<td>0.00</td>
<td>74.77</td>
<td>Conexión C2.10</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión A8</td>
<td>-0.20</td>
<td>0.00</td>
<td>74.77</td>
<td>Conexión C2.11</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión A9</td>
<td>-0.20</td>
<td>0.00</td>
<td>74.77</td>
<td>Conexión C2.12</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión C1.01</td>
<td>1.40</td>
<td>0.00</td>
<td>79.38</td>
<td>Conexión C2.13</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión C1.02</td>
<td>1.40</td>
<td>0.00</td>
<td>79.38</td>
<td>Conexión C2.14</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión C1.11</td>
<td>1.40</td>
<td>0.00</td>
<td>79.38</td>
<td>Conexión C2.15</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión C1.12</td>
<td>1.40</td>
<td>0.00</td>
<td>79.38</td>
<td>Conexión C2.16</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión C1.21</td>
<td>1.40</td>
<td>0.00</td>
<td>79.38</td>
<td>Conexión C2.17</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión C1.22</td>
<td>1.40</td>
<td>0.00</td>
<td>79.38</td>
<td>Conexión C2.18</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión C1.31</td>
<td>1.40</td>
<td>0.00</td>
<td>79.38</td>
<td>Conexión C2.19</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión C1.32</td>
<td>1.40</td>
<td>0.00</td>
<td>79.38</td>
<td>Conexión C2.20</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>Conexión C2.01</td>
<td>1.40</td>
<td>0.00</td>
<td>79.38</td>
<td>Conexión C2.21</td>
<td>-1.60</td>
<td>0.00</td>
<td>76.17</td>
</tr>
<tr>
<td>ID Línea</td>
<td>Longitud m</td>
<td>Diámetro mm</td>
<td>Rugosidad mm</td>
<td>Caudal lps</td>
<td>Velocidad m/s</td>
<td>Pérd. m/km</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Bomba 1</td>
<td>No Disponible</td>
<td>No Disponible</td>
<td>No Disponible</td>
<td>7.00</td>
<td>0.00</td>
<td>-84.01</td>
<td></td>
</tr>
<tr>
<td>Tubería B1</td>
<td>2.5</td>
<td>50.8</td>
<td>0.15</td>
<td>7.00</td>
<td>3.45</td>
<td>323.24</td>
<td></td>
</tr>
<tr>
<td>Tubería B2</td>
<td>0.5</td>
<td>50.8</td>
<td>0.15</td>
<td>7.00</td>
<td>3.45</td>
<td>323.24</td>
<td></td>
</tr>
<tr>
<td>Tubería B3</td>
<td>5.5</td>
<td>50.8</td>
<td>0.15</td>
<td>7.00</td>
<td>3.45</td>
<td>323.24</td>
<td></td>
</tr>
<tr>
<td>Tubería A1</td>
<td>4.9</td>
<td>50.8</td>
<td>0.15</td>
<td>3.84</td>
<td>1.90</td>
<td>99.83</td>
<td></td>
</tr>
<tr>
<td>Tubería A2</td>
<td>11.7</td>
<td>50.8</td>
<td>0.15</td>
<td>3.84</td>
<td>1.90</td>
<td>99.83</td>
<td></td>
</tr>
<tr>
<td>Tubería A3</td>
<td>27.95</td>
<td>50.8</td>
<td>0.15</td>
<td>3.84</td>
<td>1.90</td>
<td>99.83</td>
<td></td>
</tr>
<tr>
<td>Tubería A4</td>
<td>22.5</td>
<td>50.8</td>
<td>0.15</td>
<td>3.84</td>
<td>1.90</td>
<td>99.83</td>
<td></td>
</tr>
<tr>
<td>Tubería A5</td>
<td>27.8</td>
<td>50.8</td>
<td>0.15</td>
<td>3.16</td>
<td>1.56</td>
<td>68.06</td>
<td></td>
</tr>
<tr>
<td>Tubería A6</td>
<td>9.8</td>
<td>50.8</td>
<td>0.15</td>
<td>3.16</td>
<td>1.56</td>
<td>68.06</td>
<td></td>
</tr>
<tr>
<td>Tubería A7</td>
<td>19.9</td>
<td>50.8</td>
<td>0.15</td>
<td>3.16</td>
<td>1.56</td>
<td>68.06</td>
<td></td>
</tr>
<tr>
<td>Tubería A8</td>
<td>4.15</td>
<td>50.8</td>
<td>0.15</td>
<td>3.16</td>
<td>1.56</td>
<td>68.06</td>
<td></td>
</tr>
<tr>
<td>Tubería A9</td>
<td>36.7</td>
<td>50.8</td>
<td>0.15</td>
<td>3.16</td>
<td>1.56</td>
<td>68.06</td>
<td></td>
</tr>
<tr>
<td>Tubería C1.01</td>
<td>2.6</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C1.02</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C1.11</td>
<td>5.5</td>
<td>50.8</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C1.12</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C1.21</td>
<td>7.9</td>
<td>50.8</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C1.22</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C1.31</td>
<td>4.2</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C1.32</td>
<td>1</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C2.01</td>
<td>2.6</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C2.02</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C2.11</td>
<td>5.5</td>
<td>50.8</td>
<td>0.15</td>
<td>7.00</td>
<td>3.45</td>
<td>323.23</td>
<td></td>
</tr>
<tr>
<td>Tubería C2.12</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C2.21</td>
<td>7.9</td>
<td>50.8</td>
<td>0.15</td>
<td>7.00</td>
<td>3.45</td>
<td>323.23</td>
<td></td>
</tr>
<tr>
<td>Tubería C2.22</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>3.60</td>
<td>3.15</td>
<td>391.88</td>
<td></td>
</tr>
<tr>
<td>Tubería C2.31</td>
<td>4.2</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C2.32</td>
<td>7.2</td>
<td>38.1</td>
<td>0.15</td>
<td>3.40</td>
<td>2.98</td>
<td>351.48</td>
<td></td>
</tr>
<tr>
<td>Tubería C3.11</td>
<td>5.5</td>
<td>50.8</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C3.12</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C3.21</td>
<td>7.9</td>
<td>50.8</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C3.22</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C3.31</td>
<td>4.2</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C3.32</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C4.01</td>
<td>2.6</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C4.02</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C4.11</td>
<td>5.5</td>
<td>50.8</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C4.12</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C4.21</td>
<td>7.9</td>
<td>50.8</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C4.22</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C4.31</td>
<td>4.2</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Tubería C4.32</td>
<td>0.3</td>
<td>38.1</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>
Con esta curva obtenemos los 3,40 lps mínimos que necesitamos, que además nos deja en la otra BIE con 3,60 lps. La bomba está trabajando en un punto de 86 mca (8,4 bar) y a 7 lps (420 lpm). Ahora ya podemos ver las pequeñas salvedades entre lo que queríamos y lo que necesitamos realmente.

6.8 SISTEMA DE ABASTECIMIENTO.

6.8.1 Sistema de Abastecimiento de agua.

El reglamento de instalaciones no hace referencia a la categoría de abastecimiento de agua, al contrario que la norma CEPREVEN, que indica que como mínimo este será sencillo. De hecho RIPCI, dice textualmente “Las condiciones establecidas de presión, caudal y reserva de agua deberán estar adecuadamente garantizadas”, dejando libertad al proyectista. Será ya el RSCIEI quien nos delimitará la categoría para los distintos sistemas en función de la norma UNE 23500:

<table>
<thead>
<tr>
<th>CATEGORÍA DE ABASTECIMIENTO (según norma UNE 23.500)</th>
<th>Se adoptará conforme a los sistemas de extinción instalados</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIE</td>
<td>Categoría III</td>
</tr>
<tr>
<td>Hidrantes</td>
<td>Categoría II</td>
</tr>
<tr>
<td>Agua pulverizada</td>
<td>Categoría I</td>
</tr>
<tr>
<td>Espuma</td>
<td>Categoría I</td>
</tr>
<tr>
<td>Rociadores automáticos (según Norma UNE-EN 12845)</td>
<td></td>
</tr>
</tbody>
</table>

Siendo equivalentes las categorías tipo III (RSCIEI) y sencillo (CEPREVEN), que se podrá constituir de varias formas como:

- Una fuente de abastecimiento capaz de satisfacer la demanda de presión y caudal.
- Una fuente de abastecimiento capaz de satisfacer el caudal, más un sistema de impulsión de agua.
- Un depósito, al aire o a presión, capaz de satisfacer el caudal necesario y un sistema de impulsión.

Supondremos que los servicios públicos de abastecimiento de agua del edificio podrán garantizar sin problemas la demanda de agua que precisa el sistema de bocas equipadas (según cálculos 420 l/m durante una hora). Pero incluso así, podrían ocurrir imprevistos y fallar el suministro. Por lo que dimensionaremos un depósito que cumpla los mínimos necesarios ya comentados.

Así que dispondremos de un sistema de abastecimiento doble (CEPREVEN) compuesto por una fuente de abastecimiento que provendrá de la Red Pública de agua. Este llenará un depósito, que dimensionaremos convenientemente a nuestra necesidad, a través de una electroválvula de llenado. El depósito abastecerá la red de BIEs apoyado con un sistema de impulsión formado por una estación de bombeo que darán la presión y caudal necesarios al sistema de bocas de incendio equipadas.
Todos estos resultados los obtendremos a partir de los cálculos pertinentes con el programa simulación Epanet 2.0.

6.8.2 Estación de bombeo.

Las estaciones de bombeo presentan ciertas particularidades, que las diferencian de las destinadas a impulsar agua para otros usos. Básicamente un grupo contraincendios o estación de bombeo está formado por:

- **BOMBA PRINCIPAL ELÉCTRICA**
- **BOMBA DE RESERVA DIESEL / ELÉCTRICA**
- **BOMBA AUXILIAR (JOCKEY)**
- **CUADROS ELÉCTRICOS DE CONTROL**
- **ACCESORIOS (valvulería, tuberías, bancada, etc...)**
Dependiendo de las necesidades de cada instalación la composición del grupo puede presentar estos componentes o una combinación distinta de ellos. En función de la normativa que se aplique a un grupo contraincendios, éste podrá incorporar más o menos sistemas de seguridad, control y alarma.

Todos los equipos contraincendios responden a un mismo sistema básico de funcionamiento. A continuación se indica la finalidad de los componentes principales de un grupo:

- **BOMBA PRINCIPAL:** Su función es suministrar el caudal de agua necesario a la presión suficiente que precise la instalación, en cada uno de los puntos de suministro (mangueras, hidrantes, sprinklers, ...). Una vez que la bomba principal se ponga en marcha, manual o automáticamente, su parada ha de realizarse manualmente, aún cuando ya no sea necesario el suministro de agua.

- **BOMBA DE RESERVA:** Tendrá las mismas características y función que la bomba principal. Esta bomba entrará en funcionamiento cuando, por cualquier motivo, la bomba principal no haya entrado en funcionamiento. El sistema de accionamiento de la bomba de reserva será independiente del utilizado para la bomba principal (2 bombas eléctricas con fuentes de energía independientes). Su parada también se realizará manualmente.

- **BOMBA AUXILIAR (JOCKEY):** Su función es la de mantener presurizada toda instalación o bien hacer frente a pequeñas demandas o posibles fugas que existieran. Su funcionamiento está controlado por un presostato que detecta las variaciones de presión en el calderín del colector de salida de la instalación.

- **CUADROS ELÉCTRICOS DE CONTROL:** Su función es el control, maniobra y protección de los distintos elementos que componen el grupo contraincendios. Dependiendo de las
características del grupo el cuadro puede presentar diferentes componentes pero básicamente se compone de bornero de conexiones, fusibles de protección, contactores, protectores magneto-térmicos, transformador, batería, cargador de batería, sirena, etc.

- **PRESOSTATOS**: Son interruptores automáticos que actúan en función de la presión y ordenan la puesta en marcha de las bombas. Se regularán en función del punto de trabajo determinado para la instalación.

- **DEPÓSITO ó CALDERIN**: Es una reserva de agua a presión que controla que la bomba jockey no esté arrancando y parando continuamente en el caso de existir una fuga o pequeña demanda de agua, a la vez que hace la función de colchón amortiguador en la instalación evitando las variaciones bruscas de presión, facilitando la regulación de los presostatos y aminorando efectos indeseados como el “golpe de ariete”.

- **VÁLVULA DE SEGURIDAD**: Su función es evitar que la bomba principal trabaje a caudal cero, permitiendo la salida de un pequeño caudal que facilite la refrigeración del cuerpo de la bomba, evitando daños por sobrecalentamiento del agua por volteo continuo. Su uso se hace necesario dada la particularidad de parada manual de las bombas principales (no regulada por presostatos).

Los grupos principales contarán con arranque automático y manual y **parada solo manual**. Mientras que la bomba auxiliar arrancará y parará de manera automática, un número alto de arranques/paradas se deberá evitar y estará regulado para comprobar posibles imperfecciones de la red.

Los presostatos de arranque de las bombas principales y de arranque/parada de la auxiliar deberán estar regulados adecuadamente para cuando se produzca cierta caída de presión. Dando como resultado la siguiente secuencia según las presiones que se fijen:

1º. Arranque de la Bomba Auxiliar (Presión < 9 bar)
2º. Arranque de la Bomba Principal (Presión < 6 bar)
3º. Arranque de la B.de Reserva, en caso que la hubiera (Presión < 6 bar)

Dicho equipo de bombeo deberá cumplir las exigencias hidráulicas de trabajo:

- La presión nominal (P) es la manométrica total (bar) de la bomba que corresponde a su caudal.
- La presión de impulsión es la presión nominal (P), más la presión de aspiración, con su signo. Y esta será igual o superior a la presión mínima especificada o calculada para el sistema.
- El grupo de bombeo principal debe ser capaz de impulsar como mínimo el 140% del caudal nominal (Q) a una presión no inferior al 70% de la presión nominal (P).
En nuestro caso hemos obtenido la siguiente curva de funcionamiento de la bomba principal a partir de la simulación en Epanet:

<table>
<thead>
<tr>
<th>ID Curve</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOMBA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tipo de Curve</th>
<th>Ecuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOMBA</td>
<td>(H = 88.67 - 0.05477(Q_{lps})^{2.00})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caudal</th>
<th>Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>65</td>
</tr>
</tbody>
</table>

con una presión nominal \(P = 8,43 \text{ bar} \) y caudal nominal \(Q = 420 \text{ lpm} \)

6.8.3 Autonomía. Dimensionado del depósito.

Una vez escogida la bomba, se puede proceder al cálculo definitivo de la instalación, dado que la presión será diferente a la estrictamente necesaria. Ello nos permitirá simular el funcionamiento de cualesquiera dos BIEs y determinar el caudal que sale por cada una de ellas.

Finalmente, con el caudal impulsado por la estación de bombeo para la situación más favorable será posible dimensionar el depósito. Siendo recomendable una reserva minima de 12 m³ (BIE-25) y 24 m³ (BIE-45).

Se realizan varias simulaciones hasta encontrar las 2 BIEs más favorables del sistema, que nos indicaran el caudal máximo que demandará la red en litros por segundo. Esto llevado a horas
nos dará a conocer la reserva mínima necesaria y así poder dimensionar un depósito que se acople a dichas necesidades.

Podemos ver que con la bomba calculada anteriormente y abriendo las BIEs más favorables, tenemos que la bomba trabaja a 85.1 mca y 7.87 lps. Que nos hace un total de 28332 litros por hora y nos da una capacidad mínima de 28,3 m³ para el depósito.

6.9 SELECCIÓN DE EQUIPOS.

6.9.1 BIEs. (Distribuidor TODOEXTINTOR)

BIE-25:

![BIE-25](image)

BIE Compacta 25 mm Manguera 20 mts con Puerta para Cristal

Boca de Incendio Equipada de 25 mm (B.I.E.) completa, homologada y certificada según UNE-EN-671:1 para su instalación final en obra. Dotada de manguera semirrígida de 25mm (1") de diámetro con 20 metros de longitud, rascarada con válvulas de "1" rosca macho a ambos extremos, con válvula de esfera de 25 mm (1"), manómetro 0-16 Bar, lanza variométrica de 3 efectos de 25 mm, devanadera fija metálica pintada en rojo (posibilidad de extraer en el montaje de la BIE) para manguera, Armario metálico (chapa de 1,5 mm de grosor) pintado en rojo RAL-3000, con puerta para cristal pintada en rojo RAL-3000, con bisagra integrada y cierre de cuadrado. Medidas del armario: 70 alto x 25 profundo x 60 ancho en cm. Entrada de tubería por abajo en el centro del armario (incluye pre-taladrado en el armario). Armario preparado para empotrar (rejilla lateral de ventilación). Manguera homologada y certificada. Incluye adhesivo de "Rompe en Caso de Incendio". Equipo completo para su instalación final en obra, ideal para plazas de obra (estrecha, funcional y poco profunda).

BIE-45:

![BIE-45](image)

Boca de Incendio Equipada de 45 mm 20 m puerta ciega con visor

Boca de incendio Equipada (B.I.E.) completa, homologada y certificada según UNE-EN-671:1 para su instalación final en obra. Dotada de manguera plana de 45 mm de diámetro con 20 metros de longitud, rascarada con válvula de asiento en latón con racor BCN de 45 mm, manómetro 0-16 Bar, lanza variométrica de 3 efectos con racor BCN de 45 mm, devanadora para manguera y armario metálico (chapa de 1,5 mm de grosor) pintado en rojo con puerta abisagrada metálica semirriega con visor central de masticarillo (ahorro de cristal) pintada en rojo con cierre de reablon y tirador de PVC con pretaladrado de seguridad. Medidas del armario: 45 alto x 13 profundo x 60 ancho en cm. Entrada de tubería por arriba a la derecha o por abajo a la izquierda del armario (incluye pre-taladrado en el armario). Armario preparado para empotrar (rejilla lateral de ventilación). Manguera homologada. Incluye adhesivo identificativo de "Manguera" para pegar en la puerta. Equipo de colocación horizontal.
6.9.2 Grupo de Bombeo. (Fabricante EBARA)

<table>
<thead>
<tr>
<th>CAUDAL TOTAL (m³/h)</th>
<th>12</th>
<th>24</th>
<th>36</th>
<th>48</th>
<th>60</th>
<th>72</th>
<th>84</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>AF ENR 32-200/7,5</td>
<td>AF ENR 32-200/11</td>
<td>AF ENR 40-200/15</td>
<td>AF ENR 50-200/18,5</td>
<td>AF ENR 65-200/30</td>
<td>AF ENR 65-200/30</td>
<td>AF ENR 65-250/30</td>
<td>AF ENR 80-200/37</td>
</tr>
<tr>
<td>90</td>
<td>AF ENR 40-250/18,5</td>
<td>AF ENR 40-315/22</td>
<td>AF ENR 50-315/37</td>
<td>AF ENR 50-315/37</td>
<td>AF ENR 65-315/45</td>
<td>AF ENR 65-315/45</td>
<td>AF ENR 65-315/45</td>
<td>AF ENR 80-250/55</td>
</tr>
<tr>
<td>95</td>
<td>AF ENR 40-315/18,5</td>
<td>AF ENR 40-315/22</td>
<td>AF ENR 50-315/37</td>
<td>AF ENR 50-315/37</td>
<td>AF ENR 65-315/45</td>
<td>AF ENR 65-315/45</td>
<td>AF ENR 65-315/45</td>
<td>AF ENR 80-315/75</td>
</tr>
<tr>
<td>100</td>
<td>AF ENR 40-315/22</td>
<td>AF ENR 40-315/30</td>
<td>AF ENR 50-315/37</td>
<td>AF ENR 50-315/37</td>
<td>AF ENR 65-315/45</td>
<td>AF ENR 65-315/45</td>
<td>AF ENR 65-315/45</td>
<td>AF ENR 65-315/55</td>
</tr>
</tbody>
</table>
TABLA DE DIMENSIONES

<table>
<thead>
<tr>
<th>Tamaño Bomba</th>
<th>Potencia kW</th>
<th>Bomba Jockey</th>
<th>Potencia kW</th>
<th>Dimensiones (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENR 50-200</td>
<td>11</td>
<td>CVM A/10</td>
<td>0,75</td>
<td>65 100 800 1300 1810</td>
</tr>
<tr>
<td>ENR 50-200</td>
<td>15</td>
<td>CVM A/12</td>
<td>0,9</td>
<td>65 100 800 1300 1810</td>
</tr>
<tr>
<td>ENR 50-200</td>
<td>18,5</td>
<td>CVM A/15</td>
<td>1,1</td>
<td>65 100 800 1300 1810</td>
</tr>
<tr>
<td>ENR 50-250</td>
<td>15</td>
<td>CVM A/15</td>
<td>1,1</td>
<td>65 100 800 1300 1855</td>
</tr>
<tr>
<td>ENR 50-250</td>
<td>18,5</td>
<td>CVM A/15</td>
<td>1,1</td>
<td>65 100 800 1300 1855</td>
</tr>
<tr>
<td>ENR 50-250</td>
<td>22</td>
<td>CVM B/23</td>
<td>1,7</td>
<td>65 100 800 1400 1855</td>
</tr>
<tr>
<td>ENR 50-250</td>
<td>30</td>
<td>CVM B/25</td>
<td>1,65</td>
<td>65 100 900 1500 1895</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>30</td>
<td>MVXE 125/10</td>
<td>4</td>
<td>65 100 900 1600 1975</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>37</td>
<td>MVXE 125/10</td>
<td>4</td>
<td>65 100 900 1600 1975</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>45</td>
<td>MVXE 125/10</td>
<td>4</td>
<td>65 100 900 1600 1975</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>55</td>
<td>EVMG 1014</td>
<td>5,5</td>
<td>65 100 1000 1800 2020</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>75</td>
<td>EVMG 1014</td>
<td>5,5</td>
<td>65 100 1000 1900 2050</td>
</tr>
</tbody>
</table>

CURVAS DE CARACTERÍSTICAS - ENR 50-315 (según ISO 9906 / 2)

- [Diagrama de curvas características](#)
6.10 PRESUPUESTO.

En este caso para el presupuesto del depósito teniendo en cuenta la capacidad necesaria y el lugar donde se ubicaría se ha creído mejor la construcción de un depósito impermeabilizado construido por albañilería, por lo que habría que pedir un presupuesto específico.

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>MODELO</th>
<th>PRECIO UNID/METRO</th>
<th>CANTIDAD</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIE 25 COMPLETA</td>
<td>BIE25CMCRR</td>
<td>351,44</td>
<td>4</td>
<td>1405,76</td>
</tr>
<tr>
<td>BIE 45 COMPLETA</td>
<td>BIE4520V</td>
<td>275,99</td>
<td>11</td>
<td>3035,89</td>
</tr>
<tr>
<td>TUBERIA ACERO 1¼"</td>
<td>CONEXIÓN A BIE</td>
<td>19,71</td>
<td>40,3</td>
<td>794,313</td>
</tr>
<tr>
<td>TUBERIA ACERO 2"</td>
<td>ANILLO-BOMBA</td>
<td>27,54</td>
<td>151,9</td>
<td>4183,326</td>
</tr>
<tr>
<td>TUBERIA ACERO 2"</td>
<td>COLUMNAS</td>
<td>27,54</td>
<td>18,4</td>
<td>506,736</td>
</tr>
<tr>
<td>CODO 90° DE 1½"</td>
<td></td>
<td>4,1</td>
<td>7</td>
<td>28,7</td>
</tr>
<tr>
<td>CODO 90° DE 2"</td>
<td></td>
<td>6,15</td>
<td>5</td>
<td>30,75</td>
</tr>
<tr>
<td>TE 2"</td>
<td></td>
<td>9</td>
<td>9</td>
<td>81</td>
</tr>
<tr>
<td>CRUZ 2"</td>
<td></td>
<td>21,7</td>
<td>3</td>
<td>65,1</td>
</tr>
<tr>
<td>REDUCCION</td>
<td></td>
<td>20,05</td>
<td>15</td>
<td>300,75</td>
</tr>
<tr>
<td>VALVULA</td>
<td>Serie 06/37</td>
<td>218,4</td>
<td>6</td>
<td>1310,4</td>
</tr>
<tr>
<td>SECCIONAM.</td>
<td>50mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipo de Bombeo</td>
<td>AF ENR 50-315/37W</td>
<td>11668</td>
<td>1</td>
<td>11668</td>
</tr>
<tr>
<td>SEÑALIZACIÓN</td>
<td>BIEs</td>
<td>5,58</td>
<td>15</td>
<td>83,7</td>
</tr>
</tbody>
</table>

IMPORTE	23494,425
IVA (18%)	4228,9965
TOTAL	27723,4215
7. INSTALACIÓN CONJUNTA DE ROCIADORES Y BIES

7.1 ABASTECIMIENTO DE AGUA Y DEPÓSITO
7.2 DESCRIPCIÓN DEL SISTEMA DE BOMBEO
7.3 CONEXIONES A OTRAS INSTALACIONES
7.4 SIMULACIÓN MEDIANTE EPANET
En este apartado, se hará el estudio de la red conjunta de BIES y rociadores, de manera que se pueda determinar las necesidades de abastecimiento, las dimensiones del depósito y la selección del grupo de bombeo que hace falta para el funcionamiento de las dos instalaciones.

7.1 ABASTECIMIENTO DE AGUA Y DEPÓSITO

El RSCI de los establecimientos industriales establece que en el caso de que coexistan varios sistemas, como una red de rociadores y una red de bies, el cálculo de la reserva de agua debe ser echo considerando la simultaneidad de operación mínima que se resume en la siguiente tabla:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] BIE</td>
<td>Gw/Re</td>
<td>0,5 Qw + Qra</td>
<td>Qm + Rm</td>
<td>Q mayor R mayor (una instal.)</td>
<td>Q mayor R mayor (una instal.)</td>
</tr>
<tr>
<td>[2] HIDRANTES</td>
<td>Qw/Re</td>
<td>0,5 Qw + Qra</td>
<td>Q mayor R mayor (una instal.)</td>
<td>Q mayor R mayor (una instal.)</td>
<td>Q mayor R mayor (una instal.)</td>
</tr>
<tr>
<td>[3] ROCIADORES AUTOMÁTICOS</td>
<td>Qm/Re</td>
<td>Q mayor R mayor (una instal.)</td>
<td>Qm/Re</td>
<td>Q mayor R mayor (una instal.)</td>
<td>Q mayor R mayor (una instal.)</td>
</tr>
<tr>
<td>[4] AGUA PULVERIZADA</td>
<td>Qm = Qr</td>
<td>Q mayor R mayor (una instal.)</td>
<td>Qm = Qr</td>
<td>Q mayor R mayor (una instalización)</td>
<td>Q mayor R mayor (una instalización)</td>
</tr>
<tr>
<td>[5] ESPUMA</td>
<td>Qm = Qr</td>
<td>Q mayor R mayor (una instalación)</td>
<td>Qm = Qr</td>
<td>Q mayor R mayor (una instalación)</td>
<td>Q mayor R mayor (una instalación)</td>
</tr>
</tbody>
</table>

De esta tabla resulta que para el caso de sistemas de BIE y de rociadores automáticos [1] + [3] se debe haber:

- Caudal de agua requerido para rociadores automáticos (QRA).
- Reserva de agua necesaria para rociadores automáticos (RRA).

Por lo tanto, teniendo en cuenta que el área de operación está constituida de un conjunto de 12 rociadores los cuales emiten un caudal de 1 [l/s] por un tiempo total de una hora, se calcula el volumen mínimo de la reserva como:
Puesto que el depósito posee un sistema de llenado colgado a la red pública, se decide de considerar un volumen total del depósito igual a 50 \([m^3]\), teniendo en cuenta que la capacidad efectiva mínima tiene que ser \(\geq 43,2 \ [m^3]\).

El fondo del depósito coincide con nivel de la planta baja, es decir, se encuentra a -3 [m] de altura por debajo de la superficie del terreno y su altura es igual a 3 metros, por lo tanto tiene una superficie de 17 \([m^2]\). Se ha decidido de emplear un depósito sin cámara de aspiración, consiguientemente la norma UNE 12845 establece las dimensiones a emplear en este caso:

Donde:

- \(N\) es el nivel normal de agua;
- \(X\) es el nivel mínimo de agua;
- \(d\) es el diámetro de la tubería de aspiración;
- \(A\) es la dimensión mínima entre el tubo de aspiración y el nivel más bajo del agua;
- \(B\) es el tubo de aspiración y el fondo del depósito.

7.2 DESCRIPCIÓN DEL SISTEMA DE BOMBEO

Todo lo relacionado con este tema se ha comentado anteriormente en la descripción del “Grupo de Bombeo” del Sistema de Bocas de Incendio.

Para una mayor seguridad se ha decidido de emplear un sistema de bombeo constituido de 3 bombas:

- 1 bomba eléctrica
- 2 bomba diesel
- 1 bomba jokey
7.3 CONEXIONES A OTRAS INSTALACIONES

La norma UNE 12845 establece en qué forma los sistemas de abastecimiento de agua para rociadores puedan ser empleados para abastecer también otras instalaciones como por ejemplo la red de bies. En particular se observa que:

- Las conexiones deben ser conformes con lo especificado en la siguiente tabla:
Por lo tanto, habiendo elegido como sistema de abastecimiento un depósito de aspiración para bomba automática, se puede notar que la instalación de bies cumple esta condición, habiendo este un diámetro máximo de 50 [mm].

Las conexiones deben realizarse por una válvula de cierre instalada aguas arriba del puesto de control, tan cerca como sea posible del punto de conexión con el tubo de alimentación del sistema de rociadores.

7.4 SIMULACIÓN MEDIANTE EPANET

Se ajustarán los parámetros y unidades de medida oportunas a las especificas que usa dicho programa.

- Caudales: \(Q \) en [lps] ó [l/s]
 - litros por segundo
- Presiones: \(P \) en [mca]
 - metros de columna de agua
- Coeficiente: \(K \), es adimensional

\(K \) es adimensional, pero nuestro caso para BIES de 45 está en referencia a litros por minuto [l/min] en caudales y bar en presiones. Por lo que \(K_{BIE} = 85 \) debemos convertirlo.

\[
Q[\text{lpm}] = K_{BIE} \sqrt{\frac{P_{\text{man}}}{\text{bar}}}
\]

Podemos decir que las unidades del coeficiente son \(K_{BIE} \left[\frac{\text{lpm}}{\text{bar}} \right] \)

\[
K'_{BIE} \left[\frac{\text{lps}}{\text{mca}} \right] = K_{BIE} \left[\frac{\text{lpm}}{\text{bar}} \right] \cdot \frac{1 [\text{lps}]}{60 [\text{lpm}]} \cdot \sqrt{\frac{1[\text{bar}]}{10.2[\text{mca}]}}
\]

\[
K'_{BIE} \left[\frac{\text{lps}}{\text{mca}} \right] = \frac{K_{BIE}}{60 \cdot 10.2} \left[\frac{\text{lps}}{\text{mca}} \right]
\]
Red.

Cotas

Longitudes.
Diámetros.

Simulaciones

Tras el diseño y dimensionado de la red de rociadores y de BIEs individuales se realizará una simulación de las dos redes conjuntas. Para la conexión de los dos sistemas habrá altas diferencias de presión, por lo que se colocará una válvula limitadora en el sistema con menor presión, en este caso será para el sistema de rociadores.

- Dimensionado del grupo de bombeo. Situación menos favorable:
Tras varias simulaciones, modificando la curva de la bomba llegamos a este caso, donde se ajustan perfectamente los dos sistemas, consiguiendo los mínimos de presión y caudales que nos exige la norma.

Para ello hemos ajustado la siguiente curva de la bomba, que nos da un punto de trabajo nominal de 86,38 mca = 8,47 bar y un caudal de 12,1 lps = 726 lpm en los rociadores y 7,01 lps = 420,6 lpm para la red de BIEs.

Selección del Grupo de Bombeo.

TABLA DE SELECCIÓN DE GRUPOS CON BOMBA NORMALIZADA SOBRE BANCADA
DIMENSIONES GRUPO ELÉCTRICA + DIESEL + JOCKEY

TABLA DE DIMENSIONES

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Potencia Bomba</th>
<th>Potencia Jockey</th>
<th>DBA</th>
<th>DCI</th>
<th>F</th>
<th>B</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENR 50-200</td>
<td>11</td>
<td>CVM A/10</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1810</td>
</tr>
<tr>
<td>ENR 50-200</td>
<td>15</td>
<td>CVM A/12</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1810</td>
</tr>
<tr>
<td>ENR 50-200</td>
<td>16,5</td>
<td>CVM A/15</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1810</td>
</tr>
<tr>
<td>ENR 50-250</td>
<td>15</td>
<td>CVM A/15</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1810</td>
</tr>
<tr>
<td>ENR 50-250</td>
<td>18,5</td>
<td>CVM A/15</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1810</td>
</tr>
<tr>
<td>ENR 50-250</td>
<td>22</td>
<td>CVM B/23</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1810</td>
</tr>
<tr>
<td>ENR 50-250</td>
<td>30</td>
<td>CVM B/25</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1810</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>30</td>
<td>MVXE 125/10</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1810</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>37</td>
<td>MVXE 125/10</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1975</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>45</td>
<td>MVXE 125/10</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>1975</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>55</td>
<td>EVMG 1014</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>2000</td>
</tr>
<tr>
<td>ENR 50-315</td>
<td>75</td>
<td>EVMG 1014</td>
<td>65</td>
<td>100</td>
<td>800</td>
<td>1300</td>
<td>2000</td>
</tr>
</tbody>
</table>

CURVAS DE CARACTERÍSTICAS - ENR 50-315 (según ISO 9906 / 2)
8. SISTEMA DE EXTINCIÓN POR AGENTES GASEOSOS (CO2)

8.4 INTRODUCCIÓN

8.5 CONSIDERACIONES PREVIAS AL DISEÑO.

8.6 DISEÑO SISTEMA DE EXTINCIÓN

8.6.1 Calculo cantidad CO2 de diseño
8.6.2 Cantidad de CO2 a suministrar
8.6.3 Cantidad de CO2 reserva
8.6.4 Cálculo hidráulico
8.1 INTRODUCCIÓN

En este apartado se diseñará un sistema de extinción de incendios por agentes gaseosos, en concreto de CO2, para el caso de la sala de ordenadores ubicada en la segunda planta del edificio industrial.

Todo sistema de extinción fijo mediante CO2 consta de una o varias botellas con sus válvulas correspondientes, tuberías de distribución y boquillas abiertas, con sus elementos de disparo y control de la descarga e instalados para la extinción de incendios.

El CO2 se caracteriza por lo siguientes aspectos:
1. El CO2 es un gas inerte, incoloro, inodoro, no corrosivo y no conductor de la electricidad
2. Este es almacenado en estado líquido
3. Su densidad a 0 ºC y 101 kPa es 1,98 kg/m3, por tanto, es más denso que el aire cuya densidad es 1,5 kg/m3
4. El CO2 es empleado en fuegos de Clase A, B y C actuando sobre ellos por sofocación y en fuegos con riesgos eléctricos.

El sistema de extinción de incendios está constituido por los siguientes elementos:

A) Depósitos o botellas de CO2.
Los depósitos criogénicos deben cumplir la ITC MIE-AP10 del R.A.P. Forman parte del sistema las tuberías, válvulas y elementos de control, unidades de refrigeración y de gasificación utilizadas para transformar el gas licuado.
La temperatura estará entre -23º y -17º C y la presión entre 17 y 22 kg/cm².
Las botellas empleadas en los sistemas de alta presión deben cumplir la ITC MIE-AP7 del R.A.P.
El grado máximo de llenado será de 0,666 kg/l.

B) Válvulas de los sistemas centralizados. Estas válvulas serán de latón y deben ser:

- Botellas piloto. Este tipo de válvula consta de: accionamiento manual mediante palanca, accionamiento por solenoide, latiguillo flexible para alta presión y válvula antirretorno con diafragma.
- Botellas auxiliares. Este tipo de válvula consta de: accionamiento neumático o manual, unión al colector de disparo mediante latiguillos de alta presión y válvula antirretorno.

C) Las válvulas direccionales
Estas válvulas permiten que una misma batería proteja más de un riesgo. Serán de acero al carbono PN 40 y cierre esférico. Son accionadas por la presión de la botella piloto cuando el sistema de detección de incendios manda una señal de apertura a la electroválvula de solenoide de la botella piloto y de la válvula direccional para dirigir el gas hacia el riesgo activo.
Deben tener también cierre manual

D) Colector de descarga y tuberías
Ambas serán de acero estirado sin soldadura DIN 2440, St 37.0

E) Boquillas de descarga.
En los “sistemas de inundación” deben ser de materiales resistentes a las bajas temperaturas y altas presiones, resistentes a la corrosión y con un diseño adecuado que impida la obstrucción por expansión del agente extintor. En los “sistemas de aplicación local” serán de baja velocidad
del tipo difusor con orificios de pequeño calibre donde se produce una caída de presión y descarga en una cámara en la que se produce la transformación de velocidad en presión.

8.2 CONSIDERACIONES PREVIAS AL DISEÑO.

Los aspectos a tener en cuenta en el diseño del sistema de extinción por CO2 serán los siguientes:

a. El sistema de extinción por CO2 se va a realizar para inundación total y alta presión
b. Las presiones deben ser en alta presión, es decir, 14 bar(abs)
c. En sistemas de ordenadores, equipos electrónicos, centros informáticos, impresoras, etc, la concentración de diseño debe alcanzarse en 240 segundos.
d. La red de tuberías de distribución debe ser metálica al igual que los accesorios (Acero DIN 1629 sin soldadura St 37.0) y soportar las siguientes presiones (de alta):
 - Entre la válvula del cilindro y la válvula direccional 120 bar
 - Entre la válvula direccional y la descarga 60 bar (se puede utilizar tubería soldada sin junta)
 - En sistemas de ALTA presión el diámetro del colector de descarga debe ser como mínimo igual a la suma de los diámetros nominales de las válvulas de los cilindros.
e. El diámetro mínimo es de 10 mm en sistemas de inundación total.
f. Las válvulas direccionales deberán situarse fuera de la zona de riesgo a proteger y colocarse de forma que no puedan abrirse por vibraciones debidas al proceso de producción o las de apertura de la válvula del depósito u otras válvulas direccionales. La descarga debe ser segura (lejos de personas, aberturas, etc.) y el DN deberá ser como mínimo del mismo diámetro que el de la tubería de alimentación

g. Las boquillas en sistemas de inundación total, deben disponerse de tal forma que se consiga una distribución uniforme de CO2 con la concentración requerida situándose en la parte alta de la zona a inundar, siendo la superficie máxima protegida no superior a 30 m2. Estas no deberán dispersar los materiales ni producir salpicaduras

8.3 DISEÑO SISTEMA DE EXTINCIÓN

Los datos de partida para el diseño del sistema de extinción son los siguientes:

- Sala de ordenadores (segunda planta): 10,33 x 11,25 m² de planta y 3 m de altura
- Superficie: 116,2 m²
- Volumen: 348,6 m³

8.3.1 Calculo cantidad CO2 de diseño

El sistema a instalar va a ser por inundación total, y el método que se va a emplear para calcular la cantidad de diseño de CO2 es el método general.

\[Q = Kb \cdot (0,2 \cdot A + 0,75 \cdot V) \cdot 1,1 \]

Donde
- A = 2·(10,33·11,25)+ 2·(11,25·3)+2·(10,33·3)= 361,9 m²
- V = 348,6 m³
- Kb es el factor para el material a proteger, y se obtiene a partir de la siguiente tabla.

<table>
<thead>
<tr>
<th>Kb para equipos especiales</th>
<th>1,2</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estaciones eléctricas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generadores eléctricos</td>
<td>2,0</td>
<td>57%</td>
</tr>
<tr>
<td>Imprentas de artes gráficas</td>
<td>2,25</td>
<td>61%</td>
</tr>
<tr>
<td>Instalaciones de pintura</td>
<td>1,2</td>
<td>40%</td>
</tr>
<tr>
<td>Máquinas de hilar.</td>
<td>2,0</td>
<td>57%</td>
</tr>
<tr>
<td>Ordenadores</td>
<td>1,5</td>
<td>47%</td>
</tr>
</tbody>
</table>

De modo que:

Q = 1,5·(316,4) · 1,1 = 522,06 kg de CO₂

8.3.2 Cantidad de CO₂ a suministrar

La cantidad de CO₂ a utilizar debe ser como mínimo la calculada anteriormente, más los siguientes elementos:
- 10 % para compensar tolerancias de llenado y de fugas en depósitos de alta o baja hasta un número de 19 depósitos.
- En sistemas de alta presión (el caso de estudio) habrá que añadirle un 30% de la cantidad de diseño para gas residual.

En el caso de diseño, el número de depósitos a utilizar se calcula teniendo en cuenta que se van a emplear depósitos de 67 litros. Por tanto, el número de depósitos necesario será:

Nº depósitos = 522 litros / (0,75 kg/litro · 67 litros) = 11 botellas

Como el número de depósitos es inferior a 19, habrá que sumarle a la cantidad de CO₂ un 10%.

Finalmente, la cantidad de suministro de CO₂ obtenida será:

Cantidad_CO₂ suministro = 522,06 (1+ 0,1 + 0,3) = 730,9 Kg de CO₂

Y el número de botellas de CO₂ de 67 litros a emplear se calculará de la manera siguiente:

Nº botellas = 730,9 litros / (0,75 kg/litro · 67 litros) = 14,54 ~15 botellas

8.3.3 Cantidad de CO₂ reserva

Se supone que el suministro de CO₂ se puede llevar a cabo en un tiempo inferior a 36 horas, y por tanto no se dispondrá de una cantidad de reserva.
8.3.4 Cálculo hidráulico

Las tuberías y boquillas deben dimensionarse para que las cantidades de diseño de CO2 necesarias se descarguen en la zona a inundar en un tiempo de descarga específico. Para ello, deberá utilizarse un sistema de tuberías simétrico.

Nosotros proponemos la distribución siguiente, constituida por seis bocas de descarga con la intención de que quede cubierta toda la superficie.

Como se ha dicho anteriormente, el sistema será de alta presión, es decir, la presión es de 14 bares.

El tiempo máximo de descarga será de 60 segundos pues este valores el que corresponde a sistemas de inundación total.

En la sala de servidores de estudio, encontramos tanto ordenadores como otros equipos electrónicos, centros informáticos, impresoras, etc. Por tanto, como se mencionó anteriormente, la concentración de diseño debe alcanzarse en 240 segundos.

La red de tuberías de distribución es metálica, al igual que los accesorios (Acero DIN 1629 sin soldadura St 37.0) y soportará las siguientes presiones:

- Entre la válvula del cilindro y la válvula direccional 120 bar
- Entre la válvula direccional y la descarga 60 bar
El diámetro de las tuberías para nuestro caso (730, 9 kg de CO2) es de 2 ½ “, como puede verse en la siguiente tabla:

<table>
<thead>
<tr>
<th>diámetro</th>
<th>Aplicación Local (30 seg)</th>
<th>inundación Total (1 min)</th>
<th>Inun. Tot. (2 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8”</td>
<td>0-18 kg.</td>
<td>1-35 kg</td>
<td>1-64 kg</td>
</tr>
<tr>
<td>1/2”</td>
<td>19-28 kg.</td>
<td>36-56 kg</td>
<td>65-108 kg</td>
</tr>
<tr>
<td>3/4”</td>
<td>29-53 kg.</td>
<td>57-100 kg</td>
<td>109-200 kg</td>
</tr>
<tr>
<td>1”</td>
<td>54-84 kg.</td>
<td>101-165 kg</td>
<td>201-325 kg</td>
</tr>
<tr>
<td>1 1/4”</td>
<td>85-144 kg.</td>
<td>166-286 kg</td>
<td>326-560 kg</td>
</tr>
<tr>
<td>1 1/2”</td>
<td>145-196 kg.</td>
<td>287-392 kg</td>
<td>561-775 kg</td>
</tr>
<tr>
<td>2”</td>
<td>197-316 kg.</td>
<td>393-625 kg</td>
<td>776-1250 kg</td>
</tr>
<tr>
<td>2 1/2”</td>
<td>317-530 kg.</td>
<td>626-1065 kg</td>
<td>1251-2130 kg</td>
</tr>
<tr>
<td>3”</td>
<td>531-735 kg.</td>
<td>1066-1482 kg</td>
<td>2131-2930 kg</td>
</tr>
<tr>
<td>4”</td>
<td>736-1240 kg.</td>
<td>1463-2480 kg</td>
<td>2931-4960 kg</td>
</tr>
</tbody>
</table>

El diámetro del colector de descarga debe ser como mínimo igual a la suma de los diámetros nominales de las válvulas de los cilindros. Por lo tanto, como nuestro sistema consta de una batería de cilindros en fila con 1 travesaño, el diámetro del colector es de 2”, de 5000 mm de largo y con una altura de 1820 mm.

<table>
<thead>
<tr>
<th>BATERIA DE 671 DE SIMPLE FILA CON 1 TRAVESAÑO</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° CIL (67 L)</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
BIBLIOGRAFÍA

- Real decreto 2267/2004, de 3 de Diciembre. Reglamento de seguridad contra incendios en los establecimientos industriales.
- REALES DECRETOS. BOE. MINISTERIO DE INTERIOR.
- NORMATIVA UNE. Asociación Española de Normalización y Certificación (AENOR).
- “R.T.2-ABA: Regla técnica para abastecimientos de agua contra incendios”. 2006. CEPREVEN
- “R.T.2-BIE: Regla técnica para instalaciones de bocas de incendio equipadas”. 2004. CEPREVEN.
- “Epanet y Cooperación: Introducción al cálculo de redes de agua por ordenador”, 2007. Santiago Arnalich
- www.soloingenieria.net
- www.todoexpertos.com
- www.soloarquitectura.com
- Catalogo EBARA: www.ebara.es
- www.scribd.com