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Abstract This paper presents a model for solving the problem of real-time neural
estimation of stiffness characteristics for unknown objects. For that, an original
neural architecture is proposed for a large scale robotic grasping systems applied
for unknown object with unspecified stiffness characteristics. The force acquisition is
based on tactile information from force sensors in robotic manipulator. The proposed
model has been implemented on a robotic gripper with two parallel fingers and on a
one d.o.f. robotic finger with opponent artificial muscles and angular displacements.
This self-organized model is inspired of human biological system, and is carried out
by means of Topographic Maps and Vector Associative Maps. Experimental results
demonstrate the efficiency of this new approach.
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1 Introduction

Since few years, the design and development of biologically inspired robotic grasping
system are extensively studied. One of the main objective of such researches is to
develop flexible and adaptive systems able to interact with an unknown environment.
In such a context, non linear stiffness behaviour between applied displacement and
resulting force is a great deal. In literature, this problem is tackled considering
the deformable material on the object and on the fingertip. The majority of them
are based on analysis of contact between robotic fingers covered by deformable
material and a rigid object. Using this approach Hyun-Yong in [1] estimates the
deformation of a soft human and artificial fingertip by means of area variation. A
function of the displacement in the contact zone between the finger and the object is
used. Experimental results with human fingers demonstrate that nonlinear stiffness
function can be approached by exponential or potential functions. Ambrosi [2]
has extended those works for discriminating softness, based on kinesthetic and
cutaneous tactile information in humans. Here the CASR (Contact Area Spread
Rate) paradigm is introduced and applied in psychophysical experiments.

The second important point to consider in reproducing a grasp is to take into
account the natural compliance of muscle and tendons. Many works have proposed
impedance laws [3] for robotic systems applied to jumping [4], walking [5], robot
manipulator [6]. . . In grasping field, Nguyen [7] simulates a 3 d.o.f. robotic finger with
a deformable material with an impedance controller. This work consider the dynamic
equation and a fingertip force sensor. Reznik [8] uses a dynamic model for control
systems for deformable fingertips, based on the discretization of soft volume into a
interconnected virtual masses. This is an adaptative approach as the parameters are
modified along the contact process. Howard [9] extend these works to the grasp of
3D non-rigid objects with two cooperative manipulators.

A lot of proposed works on deformation estimation of objects are based on
vision sensors approach [10] and few of them suggest to use tactile sensors in
robotic grasping systems. Because force sensors decrease the control complexity, we
propose a solution for real-time stiffness control in non-rigid objects based on tactile
exploration. This model has been implemented in robotic platform to demonstrate
its performances.

The remainder of this paper is organized as follows. Section 2 describes the
requirements for the control system in order to develop a general model that
can be applied to several robotic manipulators with different joint controllers and
dynamic environments. The structure of the proposed neural model is presented in
Section 3. Experimental results are shown in Section 4. Finally, a conclusion is given
in Section 5.

2 Requirements in the Control System for Stiffness Estimation

Starting from the robotic grasping characteristics, we impose several requirements
in our control system. Firstly, the estimation of the stiffness characteristic of each
object has to be based on learned neuron maps, which give the nonlinear behaviours
of contact between robotic joint and the non-rigid objects. The second is the on-line
capability of adding to the neural structure new samples of stiffness curves (adaptive
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learning). This is based on a decision parameter, which is a function of the distance
from the contact behaviour to the learned stiffness maps. Third requirement is to
carry out the maximum convergence velocity of force applied to unknown objects
without any oscillations (better compliance). It allows robotic fingers to quickly reach
the estimated displacement based on desired final force to be applied on unknown
non-rigid object. The fourth is the positioning control of several robotic manipulator
devices with the ability of moving the strains of two joints agonist–antagonist artificial
muscles by means of biologically inspired neural models. Finally, this model has to
be able to control all the joint of a complex robotic grasping manipulator.

3 Structure of the Neural Model

The proposed architecture links three connected neural models in order to solve all
above described requirements. The input of the controller is the desired final force
to grasp the object with unknown stiffness characteristic. Indeed, a K co-contraction
parameter can be used to supply the controller joint in robotic hands with torque
control. The K parameter represents the force in joint when the equilibrium position
is reached. In Fig. 1, the general structure of the neural model is shown.

3.1 Displacement Neural Estimator

This neural architecture is dedicated to obtain the accurate final position of the
manipulator joint as a function of the desired final force in contact point (between the
object to be grasped and the tactile sensors of the joint) and the values corresponding
to behaviours of learned objects. This joint position is estimated starting from initial
samples that determine the nearest stiffness curve.

Fig. 1 General structure
of neural model
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In the learning phase, few objects with different characteristics of stiffness train
the system. In each case, the joint produces small increments of displacement (�θ)

starting from an initial small contact. It produces a force increment (�F). The vector
formed by (�F, �θ) is stored in a two dimensional map. Figure 2 shows the obtained
curves, in this phase, for different objects.

For the actuation phase, the displacement neural estimator model is divided into
three modules: samples acquisition module, stiffness estimator and joint displace-
ment generator. In Fig. 3, scheme of these connected modules is represented.

Samples acquisition module allows to obtain the initial samples as a function of the
joint position control or force control. The selection depend on how the robotic joint
controller and tactile acquisition are designed. In force control selection, the system
measures joint position increments corresponding to fixed force values belong to the
operation range of the sensor.

By the other hand, in joint position control the system has to produce displace-
ment increments belong to force variation range of each object when pressed by the
sensor. It allows the system to obtain series of significant points of the object that has
been pressed.

In this case, each new sample of position increment depends on the previous
position. This dependence is function of the slope of the curve that fits all previous
points (�F, �θ). So, it is necessary to estimate the slope of the curve in the first
sample. Then, next joint increment will be obtained from a mathematical expression
as a function of slopes of learned curves. Figure 4 shows the polynomial that fits to
this expression.

This function has been obtained from learned curves of force-position increments
and the desired displacement in order to get a minimal number of representative
samples for the stiffness estimation.

Fig. 2 Force and displacement
in learning phase
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Fig. 3 Displacement neural
estimator scheme

The next joint increment is given by:

�θi+1 =

⎧
⎪⎪⎨

⎪⎪⎩

i=samples−1∑

i=0
ai · Ri, R ≤ Rmax

/
2

R0, R > Rmax
/

2

(1)

the slope is

R=
�Fi

�θi
(2)

and a is the vector of coefficients of the polynomial
The “stiffness estimator” module is based on Topographic Map [11] architecture.

It consists on a two-dimensional map, which is a neural representation of the
incremental joint position displacement (linear or angular) and of the obtained force.
Each cell is a neuron of the network whose weight is the desired value (�θ). The
internal representation of the neural topographic map is shown in Fig. 3.
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Fig. 4 Function of position
control

The inputs of this module are the force increments from each sample vector from
the unknown object. The force increments (�F) active the row, directly. For the
column selection a quadratic error parameter between the learned stiffness curves
(neuron weights) and each initial force-angle samples is evaluated. For each sample
n,a neuron weight Zij is selected. Then a decision parameter DP is compared with
updating umbral, where the error parameter for sample n is defined by:

errn =
√

�θ2
n − (

Zijn
)2 (3)

and the decision parameter is:

DP = samples
max
n=1

(errn) (4)

If DP is greater than a prefixed umbral (U), the system will decide to add the force-
position characteristics of this object in the topographic map. In that case, the system
generates a sequence of position increments, in order to add in the cell of the neural
net the new obtained values.

By the opposite, if DP parameter is less than the umbral, the system makes an
interpolation of error signals errn from initial samples. So, the incremental values
of forces from the obtained samples (�Fn) and their related error parameter (errn)

the interpolation is made by means of a polynomial function. Let b be the obtained
k-dimensional coefficient vector, the desired incremental force (�FT) will generate
on error by means of the expression:

errT =
k=orden−1∑

k=0

b k · �Fk
T (5)

So, from Eq. 3, the displacement increment is obtained by:

�θT =
√

err2
T + (

ZijT
)2 (6)
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Fig. 5 Umbral for decision
parameter DP

The weight value ZijT corresponds to the activated cell of the topographic map as a
function of �FT= FT -F0, where:

FT : Desired final force.
F0: Initial contact force of reference.

i: This index selects the activated file by �FT .
j: This index selects the column corresponding to the learned curve, which is

nearest to the behaviour of the current object.

The chosen value of umbral parameter (U)is critical for the control system perfor-
mance and has to control two requirements. On one hand, U has to be small in order

Fig. 6 Error and map dimension
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to the produced error for �θ estimation when DP<U, was small. But on the other
hand, small U implies a high processing time for the control due to the probability of
DP>U to be greater. In this case, the neural topographic map increases as a function
of the number of new learned objects. The umbral is computed as a percentage of
area between two learned consecutive curves. This is shown in Fig. 5.

If U=100%, no new objects will be added to the learning map, because DP<U, and
the produced error will be maximum. By the opposite, if U=0%, the error produced is
minimum but the dimension of topographic map groves without any limits. The error
percentage and the size of the map, as a function of U parameter are represented in
Figs. 6a and b, respectively. Due to the precision characteristics of tactile sensor, a
minimal error esensor, always remains.

Finally, the “joint displacement generator” carries out the final position �θ , as a
function of input force that it is desired for grasping the body, the interpolated error
parameter, and DP. If this signal is less than predefined umbral, the force control or
position control will determine the final position �θ , directly.

3.2 Motor Command Generator

The second model is a tension generator. This neurobiological self-organized neural
network is a VAM (Vector Associative Map) algorithm (developed in Boston
University) [12].

This algorithm has been applied to tactile-motor integration in robotic grasping
tasks [13] and visually guided reaching in robotic stereoheads [14]. In Fig. 7, the
scheme of this model is shown. This neural structure learns the mapping between
the input vector, formed by final displacement increment (�θ) and co-contraction
K parameter (for manipulator that requires torque control) and the tensions (�A1,
�A2) to control the opponent movement of a robotic finger. Figure 8 shows the
projections of spatial coordinates into motor coordinates.

In learning phase, neuron weights (Wij) are adapted by Difference Vector (DV)
block that computes the difference between the sensorial and motor target position
and the actual position. The samples are obtained by means of an Endogenous
Random Generator (ERG) block that generates tensions to the joint controller. The
weight matrix is obtained Applying the Least Square Method (LMS).

The adaptation ability of this VAM model allows the system to update the neural
weights in actuation phase. It is based on iterative method that modifies this matrix

Fig. 7 Schematic diagram of
the mode
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Fig. 8 Spatial and motor
coordinates mapping

in the opposite direction of the quadratic error gradient. The iterative equation that
calculates the new (Wij) values is given by:

dwij

dt
= η · s j ·

⎛

⎝ri −
M∑

j=1

wij · s j

⎞

⎠ (7)

where:

– i index selects the element of (�A1, �A2)
– r vector – motor positions-
– j is the element of (K, �θ),
– s vector – spatial positions- that fire the Wij neuron weight.
– M is the dimension of s vector
– η parameter represents the learning rate that determines the weight convergence

speed of the neural net.

In order to smooth the movement of the robotic joint towards the estimated final
position, corresponding to a predefined force, a feedback sigmoid function GO is
applied to (A1, A2) outputs. The shape of this signal defines the convergence speed
of the finger joint in the tactile process. Figure 9 shows the modulator function GO.

3.3 Robotic Joint Controller

This model directly acts on the controller of the robotic manipulator. It receives
the (A1, A2) tensions form motor command generator and the K co-contraction
parameter from the initial conditions of grasping process. The output are the
commands for positioning the robotic finger in the estimated position that produces
the predefined grasping force as a function of the stiffness of unknown objects.
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Fig. 9 GO modulator function

The structure of this neural module depends on the design of the joint controller.
An example is presented in [15], where a FLETE (Factorization of Length an
Tension Muscle) algorithm is employed to control the force and longitude of an
agonist-antagonist system of opponent muscles of a robotic arm. In [16], Mo-Yuen
applied a neural CMAC (Cerebellar Model Articulation Controller) algorithm,
developed by Albus [17], to approximate the opponent movement of the human arm
with two-link robot arm.

4 Experimental Results

In order to evaluate the performance of this model, two robotic manipulators
Fig. 10, with different operation ways, have been programmed for real-time stiffness

Fig. 10 Experimental robotic platforms
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estimation in a grasping process. Figure 10a shows the parallel robotic gripper with
artificial tactile skins and in Fig. 10b a robotic finger with artificial agonist–antagonist
muscles an fingertip sensor is shown.

In the learning phase, several objects with different stiffness characteristics have
trained the displacement neural estimator module. In Fig. 2, these samples are shown.
Indeed, in motor command generator module, an initial neuron weight matrix has
been obtained by means of the ERG block. It has generated the spatial-motor
coordinates projective map.

In the operation phase, unknown objects with different stiffness behaviour have
been used. In all cases, only three initial samples have been chosen employing force
control and position control. The input information to the system is the final force
(FT) with which the object has to be grasped and the K co-contraction parameter.
The vector (FT ,K) is the input to the displacement neural estimator module. De-
pending of the controller of each platform, force-control or displacement-control has
been used for sampling. In all cases, only three initial samples have been necessary to
estimate the displacement increment in Topographic Map architecture. It is carried
out by means of DP decision parameter, errn vector, the learned neuron map and the
joint displacement generator module. In Fig. 11, the three samples and the estimated
final displacement is shown. The four curves correspond to the stiffness behaviours
from learned objects.

Once �θT has been obtained, the (K, �θT) vector supplies the motor command
generator, in order to carry out the desired tensions when the equilibrium position
is reached. Applied the GO signal of Fig. 9, (A1,A2) output vector is carried out by
means of neural model based on VAM algorithm. The response is shown in Fig. 12.

In this case a K=0.2 parameter has been predefined. In absence of load, K can be
small, but if any external force is applied to the joint, it is necessary to increase this
parameter in order to overcome the variation of dynamic behaviour conditions. In
order to increase the convergence velocity of tension signals, it is possible to modify
A coefficient of the sigmoid GO expression. The new input and the generated output

Fig. 11 Displacement
estimation
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Fig. 12 Tensions for joint
opponent controller

are used to update the neuron weights of the neural net, by means of the expressed
iterative equation. So the proposed model is able to modify its performances when
variations on environment exit.

Finally this tension signals are the input to the robotic joint controller. It acts
over the pair the muscles of joint in order to reach, with the better compliance,
the estimated final position. Because the robotic platform in our group has been
mechanically designed with the capacity of opponent movement, the referenced
FLETE algorithm has been used to place the joint in the desired final position.

5 Conclusion

As conclusion, the integration of these three learning neural model results in a real-
time feedback system that is able to smoothly control the movement of an anthropo-
morphic finger, for any force and co-contraction (K) value, with no dependence of
nonlinear stiffness characteristic of objects. Indeed, this neural controller avoids the
system to know the interactive dynamic relationships of the contact points between
the robotic system and each touched object.
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