

Guía docente de la asignatura INVESTIGACIÓN Y DESARROLLO EN PROCESOS QUÍMICOS Y BIOTECNOLÓGICOS

Titulación: Master en Ingeniería Ambiental y de Procesos Químicos y Biotecnológicos

Curso 2012/2013

Guía Docente

1. Datos de la asignatura

Nombre	Investigación y Desarrollo en Procesos Químicos y Biotecnológicos		
Materia	Procesos Químicos y Biotecnológicos		
Código	210601016		
Titulación/es	Master en Ingeniería Ambiental y de Procesos Químicos y Biotecnológicos		
Centro	Escuela Técnica Superior de Ingeniería Industrial		
Tipo	0		
Periodo lectivo	C2 Curso 2012-2013		
Idioma	Castellano		
ECTS 3.0	Horas / ECTS 25 Carga total de trabajo (horas) 75		
Horario clases teoría Aula			
Horario clases p	rácticas Lugar		

2. Datos del profesorado

Profesor responsable	Francisco Borrego Ríos		
Departamento	Zoster S.A.		
Área de conocimiento			
Ubicación del despacho			
Teléfono	Fax		
Correo electrónico			
URL / WEB			
Horario de atención / Tu	torías		
Ubicación durante las tu	torías Edifício ETSINO, 1ª Planta Despacho nº 29		

Coordinador académico

Profesor responsable	Mª Rosario Castellar Rodríguez		
Departamento	Ingeniería Química y Ambiental		
Área de conocimiento	Ingeniería Química		
Ubicación del despacho	Edifício ETSINO, 1ª Planta Despacho nº 29		
Teléfono	968325504 Fax 968325555		
Correo electrónico	rosario.castellar@upct.es		
URL / WEB	http://moodle.upct.es		
Horario de atención / Tutorías			
Ubicación durante las tu	torías Edifício ETSINO, 1ª Planta Despacho nº 29		

3. Descripción de la asignatura

3.1. Presentación

La Investigación y el Desarrollo tecnológico y la Innovación que se realizan en un país son factores críticos para determinar su crecimiento económico, el nivel de bienestar, y su competitividad internacional. Además, todos estos factores son de gran importancia para la supervivencia de las organizaciones ya que contribuyen a situarlas en una posición adecuada para afrontar nuevos desafíos que surgen en un mercado cada vez más globalizado

3.2. Ubicación en el plan de estudios

La asignatura de "Investigación y desarrollo en procesos químicos y biotecnológicos" se estudia en el Master de Ingeniería Ambiental y de Procesos Químicos y Biotectnológicos, en el segundo cuatrimestre y está incluida como obligatoria en la especialidad de Procesos Químicos y Biotecnológicos y en la de Investigación, siendo optativa en la especialidadm Académica y en la de Ingeniería Ambiental

3.3. Descripción de la asignatura. Adecuación al perfil profesional

La asignatura "Investigación y Desarrollo en Procesos Químicos y Biotecnológicos" plantea cuestiones de fundamental importancia en la industria actual. En un master destinado al desarrollo de procesos químicos y biotecnológicos el conocimiento de los conceptos y modos de trabajo en I+D+i es fundamental. Las actividades de Investigación, Desarrollo Tecnológico e Innovación están siendo objeto de una especial atención como consecuencia de su importancia en el progreso económico y social. Esto hace que sea necesario el estudio de estos contenidos por parte del alumnado que en su futuro profesional se va a dedicar a estas tareas.

3.4. Relación con otras asignaturas. Prerrequisitos y recomendaciones

Van a ser importantes sobre todo las habilidades y conocimientos para la búsqueda de información.

3.5. Medidas especiales previstas

En caso de alumnos con necesidades especiales se estudiará cada caso de modo individual y se buscará una solución favorable para el interesado y que no resulte un inconveniente para el resto de los alumnos.

4. Competencias

4.1. Competencias específicas del título según la especialidad

A.- ESPECIALIDAD ACADÉMICA.

- □E A1. Aplicar a la docencia científica y tecnológica ligada al campo de competencia del postgrado propuesto, en los niveles formativos medios y superiores, los conocimientos de matemáticas, física, química, biología, geología e ingeniería, necesarios para la adquisición por los alumnos de estos niveles, de la formación básica adecuada.
- □E A2. Concebir planes docentes aplicados a enseñanzas medias y superiores que permitan conseguir los objetivos de formación y competencia adecuados a cada caso.
- □E A3. Seleccionar las técnicas y procedimientos adecuados en el diseño curricular y para la práctica docente, con especial atención en los aspectos evaluativos.
- □E A4. Incorporar las nuevas tecnologías de innovación docente en la impartición de las enseñanzas de nivel medio y superior.
- □E A5. Planificar, ordenar y supervisar el trabajo en equipo, fomentando la optimización horizontal de los contenidos educativos.
- □E A6. Ejercer funciones de liderazgo y orientación en la formación integral de los discentes en los niveles académicos diana del postgrado.

B.- ESPECIALIDAD PROFESIONAL.

B.1.-PROCESOS QUÍMICOS Y BIOTECNOLÓGICOS

- ☑E B1. Diseñar, planificar, ejecutar, controlar, optimizar, equipos y procesos químicos y/o biotecnológicos dentro del marco del desarrollo sostenible.
- ☑E B2.Seleccionar técnicas y procedimientos apropiados en el diseño, aplicación y evaluación de reactivos, métodos y técnicas analíticas.
- ☑E B3. Valorar los riesgos asociados a la utilización de sustancias químicas y/o biológicas y los grandes riesgos derivados de los procesos industriales.
- □E B4. Procesar, manipular y analizar datos físicos, químicos y biológicos resultado de los procesos desarrollados, aplicando herramientas computacionales para la optimización del conjunto.
- ☐E B5. Diseñar experimentos a escala de laboratorio y piloto para la simulación de procesos y el estudio del cambio de escala.
- ☑E B6. Planificar, ordenar y supervisar el trabajo en equipo, ejerciendo funciones de liderazgo y orientación en la ejecución de procesos a escala industrial.

B.2.-INGENIERÍA AMBIENTAL

- □E B7. Diseñar, planificar, ejecutar, controlar, optimizar, equipos y procesos para la adecuada gestión y /o tratamiento de efluentes urbanos o industriales.
- □E B8. Seleccionar técnicas y procedimientos apropiados en el diseño, aplicación y evaluación de reactivos, métodos y técnicas analíticas para la vigilancia y el control ambiental.
- □E B9. Valorar los riesgos asociados a la utilización de sustancias químicas y/o biológicas y los grandes riesgos derivados de los procesos industriales.
- □E B10. Procesar, manipular y analizar datos físicos, químicos y/o biológicos resultado de los análisis de los indicadores ambientales, aplicando herramientas computacionales para su tratamiento.

☐E B11. Diseñar experimentos a escala de laboratorio y piloto para el desarrollo de nuevas alternativas o mejores tecnologías de control ambiental. □E B12. Planificar, ordenar y supervisar el trabajo en equipo, ejerciendo funciones de liderazgo y orientación en la ejecución de procesos de gestión, vigilancia y control ambiental. C.- ESPECIALIDAD INVESTIGACIÓN. DE C1. Diseñar, planificar, ejecutar proyectos de investigación básica y aplicada en relación con los procesos químicos, biotecnológicos y del medio ambiente. ☐E C2. Realizar búsquedas documentales (acceso a documentos científicos, patentes, literatura gris, etc.), indización y catalogación de documentos, y estudios bibliométricos. ☐ E C3. Establecer contactos profesionales que permitan el intercambio de la investigación y de la innovación científica y tecnológica con otros grupos de investigación, con la industria y el sector productivo. ☐ E C4. Procesar, manipular y analizar datos físicos, químicos y/o biológicos resultado de las investigaciones, aplicando herramientas computacionales para su tratamiento. ☐E C5. Coordinar y lidera proyectos de I+D+i en los ámbitos científicos y tecnológicos propios de este postgrado. ☐ E C6. Concebir, planificar y materializar en publicaciones los resultados de la investigación, contribuyendo a la difusión de los avances científicos de los grupos vinculados al

4.2. Competencias genéricas / transversales COMPETENCIAS INSTRUMENTALES ☑ T1.1 Capacidad de análisis y síntesis

☐ T1.2 Capacidad de organización y planificación

☑ T1.3 Comunicación oral y escrita en lengua propia

☐ T1.4 Comprensión oral y escrita de una lengua extranjera

☐ T1.5 Habilidades básicas computacionales

☑ T1.7 Resolución de problemas

COMPETENCIAS PERSONALES

postgrado.

☐ T2.2 Trabajo en equipo

☐ T2.3 Habilidades en las relaciones interpersonales

☑T2.4 Habilidades de trabajo en un equipo interdisciplinar

☐ T2.5 Habilidades para comunicarse con expertos en otros campos

☐ T2.6 Reconocimiento de la diversidad y la multiculturalidad

☐ T2.8 Compromiso ético

COMPETENCIAS SISTÉMICAS

☑ T3.1 Capacidad para aplicar los conocimientos a la práctica

⊠ T3.2	Capacidad de aprender
□ T3.3	Adaptación a nuevas situaciones
⊠T3.4	Capacidad de generar nuevas ideas (creatividad)
□ T3.5	Liderazgo
□ T3.6	Conocimiento de otras culturas y costumbres
⊠ T3.7	Habilidad de realizar trabajo autónomo
⊠ T3.8	Iniciativa y espíritu emprendedor
⊠ T3.9	Preocupación por la calidad
⊠ T3.10	Motivación de logro

4.3. Resultados esperados del aprendizaje

Al finalizar la asignatura, el alumno deberá ser capaz de:

- 1. Conocer la importancia de la innovación en la industria de química fina y biotecnología.
- 2. Comprender la importancia de una eficaz gestión del conocimiento en el éxito de un proyecto de I+D+i.
- 3. Fomentar la creatividad en la solución de problemas y generación de ideas.
- 4. Conocer los fundamentos básicos que rigen las diferentes etapas de un proyecto de investigación y desarrollo de nuevos productos o procesos.
- 5. Adquirir habilidades técnicas para desarrollar un plan de I+D de un nuevo producto o proceso.

5. Contenidos

5.1. Programa de teoría

Unidad Didáctica 1: Aspectos generales de la innovación en la industria de química fina y biotecnología (2h)

Unidad Didáctica 2: Etapas de un proyecto de I+D (3 h)

Unidad Didáctica 3: Documentación de producto. Registro (3h)

5.2. Programa de prácticas

Cada alumno diseñará y realizará un proyecto de investigación en una empresa simulada

5.3. Programa resumido en inglés

General aspects of the innovation in chemistry and biotechnology industry Stages of a project of research and development Documentation of a product

6. Metodología docente

6.1. Actividades formativas					
Actividad	Descripción de la actividad Trabajo del estudiante		ECTS		
Clase de teoría	Exposición de contenidos mediante presentación y/o explicación por parte del profesor, utilizando técnicas de aprendizaje cooperativo. Resolución de dudas.	Presencial: Asistencia y participación activa.	iva. 0,32		
		No presencial: Estudio de la materia	1.00		
Tutorías	Se aprovechan para realizar un	Presencial:			
individuales y de grupo	seguimiento personal y/o grupal del aprendizaje	No presencial: Planteamiento de dudas a través de correo electrónico	0,50		
Realización de	Se realizará un trabajo de	Presencial:			
trabajos de investigación individual l	deberán realizar un informe del	No presencial: Elaboración del trabajo de investigación individula	1.18		
	•				

3

7. Evaluación

7.1. Técnicas de evaluación						
Instrumentos	Realización / criterios	Ponderación	Competencias genéricas (4.2)evaluadas	Resultados (4.3) evaluados		
Asistencia y participación en clase		20%	T1.1, T1.3, T1.7, T2.4, T2.7, T3.2, T3.10	1-5		
Evaluación de los trabajos de investigación individuales o en grupo	Se evaluará el informe del trabajo de investigación realizado por el alumno	80%	T1.1, T1.3, T1.6, T1.8, T2.1, T3.1, T3.2, T3.4, T3.7, T3.8, T3.9, T3.10	1-5		

7.2. Mecanismos de control y seguimiento

El control y seguimiento del aprendizaje se realizará mediante las siguientes acciones:

- Asistencia a clase
- Corrección de los informes del supuesto práctico propuesto.

8. Recursos y bibliografía

8.1. Bibliografía básica

- "Collaborative research and development projects: a practical guide" T. Harris. Publisher: Springer; 1 edition (April 2007), ISBN: 978-3540460527
 - "Concept research in food product desing and development" R. Howard Moskowitz, Sebastiano Porretta, Matthias Silcher. Publisher: Iowa State University Press (26 April 2005). ISBN-13: 978-0813824246
 - "Research and Development Management in the Chemical and Pharmaceutical Industry" Peter Bamfield, Publisher: Wiley-VCH; 3Rev Ed edition (18 Aug 2006) ISBN-13: 978-3527317752.

8.2. Bibliografía complementaria

_

8.3. Recursos en red y otros recursos

http://moodle.upct.es