
Direct Modeling:
from Sketches to 3D Models

Fernando Naya
Dep. Expr. Gráfica Ingeniería, UPV
Camino de Vera, 46020 Valencia

fernasan@degi.upv.es

Joaquim A Jorge
Dep. Engª. Informática, IST

Av. Rovisco Pais, 1049-001 Lisboa
jorgej@acm.org

Julián Conesa
Dep. Expr. Gráfica, UPCT

Dr. Fleming, 30202 Cartagena
julian.conesa@upct.es

Manuel Contero José María Gomis
Dep. Expr. Gráfica Ingeniería, UPV
Camino de Vera, 46020 Valencia

{mcontero,jmgomis}@degi.upv.es

Abstract
In spite of recent advances in Computer Aided Design, Graphical User Interfaces (GUI) are, by and large, still
at the stage of the so-called WIMP (Window, Icon, Menu, Pointing device) approach. In recent years, our re-
search team has developed different algorithms in Geometric Reconstruction. The aim of this effort is to obtain
an automatic (or, at least, easy-to-use) means to generate 3D models from freehand 2D drawings. This ap-
proach serves as the basis to a calligraphic interface, based on freehand sketches and gestures, described as a
prototype application capable of modeling special kinds of objects such as normalon and quasi-normalon poly-
hedra. Using our system users can directly draw the axonometric view of an object to yield a 3D model. While
much work remains to be done, the current application already shows gains with respect to more traditional
forms of modeling in that it embodies a drawing approach familiar to most draftspeople, who can start modeling
relatively complex shapes without much training. Preliminary studies show that our modeling system compares
favorably to commercial grade CAD systems both in number of operations required to creating objects and time
to accomplish simple modeling tasks.

Keywords
Calligraphic Interfaces, Geometric Reconstruction,

1. INTRODUCTION
Recently, there has been a lot of interest in developing
algorithms for interactive geometric construction of 3D
models. While most of the activity in this area in the past
has been focused in off-line computer vision algorithms,
the growing focus on sketches and modeling has brought
forth a new emphasis on methods and approaches geared
towards interactive applications. To this end, the aim of
our research is to develop expeditious ways to construct
geometric models. In other words, we want to automati-
cally generate solid and surface models from freehand
two-dimensional drawings. As a first approximation, our
previous efforts have yielded a reasonably robust geomet-
ric modeling program that allows to construct 3D models
from axonometric perspective line drawings. This pro-
gram uses well-formed drawings created by means of a
two-dimensional CAD program. In these drawings, the
model is defined in pseudo-perspective projection defined
by lines which meet precisely at well-defined vertices.
These drawings are then exported in a “standard” (DXF)
format to the reconstruction application, which performs

an optimization task based on perception theory, yielding
a boundary representation of the reconstructed object.
Our previous work has yielded a reliable and robust re-
construction core, especially in the case of normalon and
quasi-normalon objects (a solid is considered to be a
normalon when there are three principal directions, that
is, when the line junctions of the figure are oriented in
only three directions). The present text describes work at
the user interface towards integrating this reconstructor
application (REFER) into an interactive working envi-
ronment, through sketch input using a digitizing tablet
and a pen, an approach we have termed calligraphic in-
terfaces. These rely on interactive input of drawings as
vector information (pen-strokes) and gestures, possibly
coupled with other interaction modalities. This environ-
ment differs markedly from previous efforts in that speed
of execution and feedback are more important than the
ability to produce complicated models from vectorized
bitmaps in one pass as typical of previous efforts in com-
puter vision. In the next section we briefly describe re-
lated work in the field of computer vision and interactive

systems. Then we present our system and describe two-
dimensional input and three-dimensional reconstruction.
Finally, we present examples of models drawn using our
system, followed by a preliminary comparison against a
commercial CAD system. The last two sections discuss
the current work and research directions for future en-
deavors.

2. RELATED WORK
Despite great advances in CAD systems since the end of
the 60s, they still show an excessive stiffness at the first
stages of the design process, in which pen-and-paper
sketches are the basic tools to express the engineer's crea-
tivity [Jenkins93, Ullman90, Goel95].
Although some pioneering work used the light pen as data
input devices [Sutherland63], WIMP interfaces (Win-
dows, Icons, Menus, Pointing devices) dominate the
commercial CAD packages market today. However, re-
cent research has focused on developing applications that
aim at designing person-machine interactive systems as
an alternative to the systems available today [Negro-
ponte73][Herot76]. One such approach uses a stylus as
input device on a digitizing tablet combined with a LCD
display. This aims at providing some of the drawing fa-
cilities afforded by conventional pen and paper, com-
monly used by designers to capture product ideas by
sketching. The current generation of powerful computer
processors and affordable input/output devices, can jus-
tify the feasibility of the new systems. In contrast the
early 90s generation of pen computers, plagued by low
computing power and expensive devices, at present many
portable digital assistants use interfaces based on this type
of interaction and a new generation of tablet computers
are coming of age that could serve as the tools of choice
for designers.
The new generation of applications geared at these new
devices, use gestures and pen-input that serve as com-
mands [Rubine92] [Long00]. Pens can also be used to
enter continuous mode sketches and freehand strokes.
Thus, there is a growing research interest on using free-
hand drawings and sketches as a way to create and edit
3D geometric models. Within this research area we can
distinguish three approaches. One family of systems uses
gestures as commands for generating solids from 2D
segments. The second approach uses algorithms to gener-
ate the geometric reconstruction of an object from
sketches that depict the 2D projection of the object. Fi-
nally, a third approach combines the two approaches
mentioned, to input models through a combination of
gesture commands and reconstruction.
Early work has provided many examples of the first ap-
proach, which we call gestural modeling:
SKETCH [Zeleznik96] basically aimed at architectural

forms, in which the geometric model is entered by a se-
quence of gestures according to a set of conventions,
regarding order in which points and lines are entered as
well as their spatial relations. For example a primitive
of the type Block is defined by three segments starting

from the same point. Positive volumes are built in the
same direction as the outer normal of an adjacent sur-
face whereas negative volumes are drawn opposite from
outer normal. An extension of this approach, the
SKETCH-N-MAKE system [Bloomenthal98] aims at
machining simple models through numerical control us-
ing the Sketch gestural interface for modeling the parts
to manufacture.

Quick-Sketch [Eggli97] is a computer tool oriented to
mechanical design. It consists of a 2D drawing envi-
ronment based on constraints. It is also possible to gen-
erate 3D models through modeling gestures.

Teddy [Igarashi99], allows free surface modeling using a
very simple interface of sketched curves, pockets and
extrusions. Users draw the object silhouette using a se-
ries of pen strokes. The system automatically proposes a
surface using a polygonal mesh whose projection
matches the object contour. This system is implemented
in Java which makes it can be easily accessible through
any Internet browser.

GIDeS [Pereira00] permits data input from a single-view
projection or from several dihedral views. When creat-
ing object from a single-view perspective, the system
uses a simple gesture alphabet to identify a basic set of
modeling primitives such as prisms, pyramids, extrusion
and revolution shapes, among others. In addition the
dynamic recognition of these modeling gestures pro-
vides the user with contextual menus and icons to allow
modeling user a reduced set of commands.

The second approach, which we call geometric recon-
struction, uses techniques based on computer vision to
build 3D geometric shapes extracted from 2D images,
representing their axonometric projections.
The systems we surveyed use two main techniques. The
first is based on Huffman-Clowes labeling scheme
[Huffman71] [Clowes71]; and the second approach treats
reconstruction as an optimization problem [Wang93].
This second approach enables us to obtain what from the
point of view of geometry is unrealizable: a 3D model
from a single axonometric projection. However, from the
psychological point of view it is a well-known fact that
humans do not seem to have any problems in identifying
3D models from 2D images. What is more, there seems to
exist a general consensus about the "correct" and "sim-
ple" models that humans see in each drawing. This is the
reason why Geometric Reconstruction, understood as a
problem of perception, can be described in terms of
mathematical optimization. Perceptual methods are dif-
ferent from other methods in that they try to implement
the way in which humans perceive objects using comput-
ing sequential language.
This can be done due to the ability to establish similarities
between the recursive processes characteristic of optimi-
zation and the way the human mind operates. Optimiza-
tion processes for geometric reconstruction present a
fundamental feature which makes them different from
other common instances of optimization problems, in that
local minima may represent incorrect solutions since they

minima may represent incorrect solutions since they may
represent 3D models that do not match human visual per-
ception. Some reconstruction browsers have been devel-
oped by authors such as Marill, Leclerc, Fischler and
Lipson [Marill91, Leclerc92, Lipson96].

Figure 1: Input Sketch

A third approach for the generation of 3D models from
sketches, combines features from the gestural and geo-
metric reconstruction methods. This is typical of more
recently published works:
Digital Clay [Schweikardt98] supports basic polyhedral

objects, combined with calligraphic interfaces for data
input. The scene is then pre-processed and transferred
to a reconstruction engine that uses Huffman-Clowes
algorithms to derive three-dimensional geometry. Fi-
nally the scene is exported in VRML format.

Stilton [Turner00], although oriented to the field of ar-
chitecture, presents interesting aspects. First, the calli-
graphic interface is directly implemented in a VRML
environment using image data as texture maps. Second,
the reconstruction process is done through optimization
based on genetic algorithms.

In comparison to the surveyed work, the application pre-
sented here allows interactive reconstruction of normalon
and quasi-normalon type objects from hand input
sketches, to yield three-dimensional models. This repre-
sents a much richer vocabulary than that of simpler ap-
proaches based on extrusion and constructive geometry,
which resort to a simple set of basic shapes. In that sense
it is arguable that our interface allows greater freedom of
modeling without the need to learn special codes for
given shapes.
The design paradigm allows composition of complex
shapes directly, i.e. from edges drawn as orthogonal pro-
jections rather than a composition of simpler shapes built
as extrusions, cuts, pockets or holes.
Further, the adoption of a line-based paradigm for inter-
active reconstruction allows users to directly edit edges
and create new vertices into models with rapid feedback.
In the following sections we describe the system opera-
tion and philosophy, followed by the methods needed to

obtain precise two-dimensional models from sketches
which we then convert to three-dimensional models.

3. SYSTEM OPERATION
In order to obtain an application capable to automatically
generate 3D models from freehand sketches, we have first
developed an application that enables us to generate 3D
surface models of the normalon type from the sketch of
their axonometric projection. We describe the three-
dimensional figure construction algorithm in Section 3.3
[Conesa01]. We note however that this approach requires
precise and well-defined geometry input. Thus we are
complementing the three dimensional surface construc-
tion with a two-dimensional sketch parsing module, that
attempts to convert rough sketches input into rigorous and
well connected line drawings. The two subsystems con-
nect in such a way that the 3D model is updated whenever
the input sketch is changed, either because new edges are
added or deleted. This is true even for invalid input line
drawings since the reconstruction system does not neces-
sarily limit its output to valid solids, only to surface mod-
els. A validation stage will typically be the last step in the
creation of a model.
Since most engineering drawings make extensive use of
lines that meet at vertices and our application recognizes
and processes these entities automatically, both the needs
for user training and learning curve are reduced in con-
trast to current CAD systems. Similarly, edges and seg-
ments are removed using a scratching gesture. The appli-
cation then adjusts sketched lines, to try and maintain a
mostly consistent view.
For every change in the sketch, the application executes
three steps in sequence. Stroke acquisition, followed by
2D Construction and 3D Reconstruction. Although 2D
Construction and 3D Reconstruction steps as defined in
the application do not depend on privileged directions in
the drawing, we have elected to use an isometric projec-
tion for simplicity. However the reconstruction subsys-
tem can work other types of orthogonal cylindrical pro-
jections, such as dimetric or trimetric representations.
The only constraint to take into account is that it is neces-
sary to start from a single orthogonal cylindrical projec-
tion of the model, which are the single-view representa-
tions most commonly used in Engineering.

3.1 Stroke Acquisition
The stage of Stroke Acquisition is responsible for low-
level user-application interaction. At this stage data are
input via a combination of stylus and digitizing LCD tab-
let as strokes (sequences of x-y coordinates from pen-
down to pen-up) which are then recognized as lines or
gestures.
The application has to adequately process the input data,
and be capable of extracting the required entities and ges-
tures, neglecting the information which is not necessary.
Figure 1 shows the input data generated from the sketch.

Figure 2: Input entities

From the input strokes recognized, the application only
needs the equivalent entities such as lines and vertices
extracted from the original sketch, as shown in Figure 2.
This is accomplished by translating strokes into vector
entities. Rectilinear segments thus constructed are then
represented by their start and end points.
To recognize lines and command gestures we have used
CALI, a library of software components to develop calli-
graphic interfaces [Fonseca01]. This library provides a
recognizer for elemental geometric forms and gestures in
real time, using fuzzy logic and a decision scheme to
classify geometric shapes. In this manner we are able to
recognize simple geometric shapes, such as triangles,
rectangles, circles, ellipses, lines, arrows, etc, and gesture
commands, such as delete, move, copy, etc.
Among the different geometric shapes and gestural com-
mands, the application currently selects sketched seg-
ments which can be recognized as a geometric form of the
type "line" or as a gestural command of the type "delete".
In this way, the application analyzes the type of the
sketched entity, and if it corresponds to a line or to the
command "delete", the entity is processed. If not, the ap-
plication ignores the new entity as shown in Figure 3.
If the application recognizes a line or the command "de-
lete", these data are fed to the next stage. The application
then waits for a new command or line gesture.

3.2 2D Geometric Construction
The aim of this stage is to generate a database from which
to generate the 3D model. That is, a pre-processing mod-
ule is required to transform the data from the table into
the necessary format to be used at the stage of 3D Recon-
struction. To obtain functional input data, we need to
cleanup input data and adjust edges to make sure they
meet precisely at common endpoints. This stage includes
input sketch filtering techniques which are applied to
drawings generated by designers and acquired through the
calligraphic interface. These consist mainly of transform-
ing sketches into geometrically consistent figures which
can then be used for generating 3D models at the next
stage.
But 2D Geometric Construction should not only remove
defects caused by designer-made errors. Its main task is

to filter all defects and errors in initial sketches and which
are inherent to their inaccurate and incomplete nature.
This problem can be illustrated by drawings in which
hand-drawn lines are perceived by humans as parallel
although their machine representations are slightly con-
vergent. As another example we have lines which do not
meet at precise endpoints, as illustrated by Figure 2.
While line endpoints at corners lie “close enough”, these
endpoints do not define vertices because they are not
completely coincident. A fuzzy formulation of these spa-
tial relations, can be used to make sure that e.g. “ap-
proximately parallel” maps to “exactly parallel” before
applying the three dimensional reconstruction algorithms.
We now look at constructing a two-dimensional represen-
tation. At present, the stage of 2D Construction receives
as input data from the Stroke Acquisition module, either
geometric shapes of type "line", or gesture commands of
type "delete". This will be expanded in the near future to
include other primitives, such as triangles and quadrilat-
erals.
When processing a geometric form of type "line", the
application has to perform several tasks to create an ade-
quate database for the 3D geometric reconstructor.
Among them, we will mention the following:
� Modifying the slope of the new lines that according

to the criteria of perception psychology are nearly
parallel to one of the three principal axes of the pro-
jection (as shown in Figure 4).

� Adjusting the start and end points of each new line in
order to make them coincident with existing vertices

2D Construction

3D Reconstruction

New input

Input=Line
or

Input=Delete

YES

NO

Stroke Acquisition

Figure 3: Stages of the application

of the model, while maintaining the appropriate ori-
entation of the edges incident at these vertices.

In order to perform these tasks efficiently, the first step is
to classify the new line, depending on its features. We
then manipulate its endpoints, so as to match the existing
edges of the model and proceed with the stage of 3D Re-
construction.
In order to classify the new line, the line is analyzed fol-
lowing these steps:
The first step consists of checking whether the new line is
parallel to any of the principal axes of the sketch, consid-
ering a certain tolerance. In the case that the straight line
is nearly parallel to one axis, then we adjust one or both
endpoints so that the resulting line is now precisely paral-
lel line to one of the three main axis.
The second step looks for vertices close to the line end-
points, again taking into account a proximity tolerance. In
the case there are several such vertices, we select the one
with the closest to that line endpoint.
For those endpoints of the new line which lie sufficiently
near to a vertex, the system records the number of edges
to this closest vertex as one of the definition points.
For endpoints of the new line which do not lie close to a
model vertex, the system analyzes whether the points are
close to an existing edge, accounting for a given tolerance
to proximity. If several edges match this criterion, we
select the edge which lies closest to the given endpoint.
As we can see the classification process above depends
on several tolerance values. These values depend on the
length of the new line.
� Tolerance of line parallelism. This tolerance value

defines the maximum deviation of the slopes of two
straight lines to be considered parallel. This tolerance
value is used to define whether a straight line is par-
allel to any of the principal directions of the drawing.

� Tolerance of vertex proximity. This tolerance value
defines the longest distance between the definition
points of the new line and the existing vertices, to be
considered adjacent. This tolerance value is used to
find the Closest Vertex.

� Tolerance of edge proximity. This tolerance value
defines the longest distance between the definition
points of the new line and the existing edges, to be
considered adjacent. This tolerance value is used to
find the Closest Edge.

Thus, the new line is classified depending on the values
of the following variables:
� Line is Parallel line to one principal axis of drawing

(value: TRUE or FALSE).
� Closest Vertex at the start defining point (value:

TRUE or FALSE)
� Closest Vertex at the end defining point (value:

TRUE or FALSE)

� Number of edges on the Closest Vertex of the start
defining point (value: numerical).

� Number of edges on the Closest Vertex of the end
defining point (value: numerical).

� Closest Edge at the start defining point (value: TRUE
or FALSE)

� Closest Edge at the end defining point (value: TRUE
or FALSE)

From this classification, the application can perform the
necessary adjustment of the defining points of the new
line and of the Closest Vertices and Closest Edges so as
to incorporate the line to the input database of the stage of
3D Reconstruction.
If the system receives a gestural command of the type
"delete", the application detects the edge(s) that the user
wants to delete from the sketch as those intersecting the
smallest quadrilateral enclosing the scratching gesture.
These are then removed from the drawing, after connec-
tivity information (see below) is updated.
After this stage all the 2D image data are stored in a data-
base. The structure of the stored information is the fol-
lowing:
� List of Vertices. Each of these entities contains the

coordinates (x, y) of the vertices that form the model
after 2D Construction.

� List of Edges. Each of these entities contains two
references to entities of the List of Vertices. Such
references define the start and end points of the line.
It is also necessary to know which vertex will be the
start point, and which vertex will be the end point
for the correct development of the reconstruction
stage.

Figure 4: 2D Geometric Construction

Figure 4 shows the entities of the sketch of Figure 1 after
2D Construction. This vectorized image is suitable for the
following stage.

3.3 3D Geometric Reconstruction
At this stage, a 3D geometric model is obtained from vec-
tor data, using the geometry information from the object
“implicitly contained” or perceptually projected in the
initial figure.

1

23

4

5

6

78

9

10

12

11

1

23

4

5

6

78

9

10
11

12

As a starting point, the X and Y axes of the model coor-
dinate system are taken from the model projection plane.
That is, each vertex of the model is assigned the same
coordinates (x, y) as those of its corresponding projection.
The z coordinates of the image are initially set to zero,
and the z coordinates of each model vertex are defined as
construction variables. As a consequence, each vertex of
the model must lie on a projecting line, which is perpen-
dicular to the image plane, since the projection is as-
sumed to be orthogonal.
In short, our solution space is defined by the values as-
signed to the z coordinates of each of the image vertices.
In our case, we work with normalon-type polyhedra. To
recap, we consider as normalon polyhedra those figures
whose edges are parallel to one of three principal direc-
tions. Normalon polyhedra can be automatically and di-
rectly reconstructed without having to resort to optimiza-
tion, which permits a fast reconstruction process as well
as to work on-line. The reconstructing process consists of
swelling the two-dimensional image.
It is also possible to apply this procedure to polyhedra
other than normalons, provided that we can evaluate the
position of all the vertices, using only edges parallel to
any of the three principal axes. In other words, such mod-
els need to fulfill the condition that removing all edges
which are non-parallel to three principal directions can be
done without the loss of vertices (Figure 5). We use the
term quasi-normalon to designate models which satisfy
this condition.
Let's note that in quasi-normalon images the principal
directions are those directions which verify a set of con-
straints:
1. Projecting constraint: the difference between the

maximum and minimum angle of the edges consid-
ered as principal directions should be greater than
90º, to correspond with an axonometric projection.

2. Topologic constraint: There should exist at least one
vertex on which three edges parallel to directions
considered as principal directions coincide.

The application of the swelling method to axonometric
projections permits the direct reconstruction of normalon
and quasi-normalon models, with no need for time-
consuming optimization processes and obviating the need
for extra interaction between the user and the system
[Conesa99]. After this stage the application generates a
surface model of the part which we previously sketched.

Figure 6: 3D Geometric Reconstruction

Once we have acquired the three-dimensional model, it is
possible to generate its representation. The application
allows us to view the resulting geometrical part either as a
wire-frame or a surface model. Figure 6 shows these two
different displays for the model sketched in Figure 1. In
addition, it is also possible to manipulate the view of the
reconstructed model.
Whenever the user enters changes to the input sketch, the
application executes the stage of 3D Reconstruction,
which allows the user to see immediately how the design
evolves, even through intermediate stages. Thus, while
modifying the object sketch, the user can see the 3D re-
sult produced. Sometimes it is desirable to turn off this
behavior if the intermediate models prove confusing.

4. EXAMPLES
In the current section we illustrate some examples of
models built with our prototype application.
Figure 7 presents different objects modeled with our sys-
tem. On the left side we show the two dimensional images
corresponding to the user's sketches. On the right side we
present the equivalent surface model as generated from
the sketch. While the model depicted in Figure 7 b)
shows a normalon typology, all the other models of this
diagram are quasi-normalon.
As is well known, the axonometric projection of a model
may correspond to two different three-dimensional mod-
els; that is, from a single view we can obtain either a
model or its Necker converse, as shown in Figure 8. By
default, the application displays models b) and e). This
assumption follows the psychological perception of small
objects with respect to human size, when watched from
top to bottom, although this behavior can be changed to
suit user’s preferences.

5. INTERACTION
Although some of the results presented here are prelimi-
nary, we have used them to assess the viability of new
approaches to develop graphical interfaces for modeling
three dimensional geometric representations of objects.
We have checked the number of elementary operations
required to create some of the (admittedly simple) models
created by our application as compared to those required
by a commercial CAD application, operated by an expert
user with three years experience using the package. The
results are presented in Table 1. As we can see, the con-
cept of elementary operations differs markedly between
the two systems.

Figure 5: Normalon equivalent to a quasi-normalon

a)

b)

c)

d)

e)

Figure 7: Normalons and quasi-normalons

Conventional CAD systems are organized around menus,
command selections, view manipulation, geometry input
through discrete sequences of data points occasionally
complemented with direct manipulation and attribute
(scale, feature, etc.) editing.

a) Sketch b) Default interpretation c) Necker converse

d) Sketch e) Default interpretation f) Necker converse

Figure 8: Necker conversion

 Fig.7 c) Fig.7 d) Fig.9

strokes 22 26 19

Erase cmds. 2 1 1

Camera Ops 3 3 3
O

ur

 S
ys

te
m

Total 27 30 23

Menu Sels. 31 33 33

Data Points 7 8 6

Camera Ops 3 3 3

C
om

m
er

ci
al

 C
A

D

Total 41 44 42

Table 1: Operations required with our approach and
a commercial system

Our system currently provides three types of elementary
constructs: stroke input (a continuous sequence of points
entered in a single interaction from pen-down to pen-up),
erase (scratch) gesture and view manipulation. Lines im-
plicitly connect at vertices with vertices being created as
needed. We have also conducted informal usability tests
with a number of non-expert users to assess learnability
and simplicity of use.
Preliminary data show that the drawing approach is easy
to explain and to learn, with users being able to apply
learned drawing skills to create simple models after less
than five minutes training. This contrasts favorably with
the amount of coaching required to accomplish the same
with the commercial system. User acceptance was high,
reflecting a better match to the task. This is probably be-
cause CAD systems require that users spend most of the
time navigating menus, which accounts for roughly 75%
of the elementary operations, for experienced users, as
can be readily seen from Table 1. Only a small fraction of
all commands are devoted to actual geometry input (16%
if we discount view manipulation). While we cannot ar-
gue that the learning curve of calligraphic modeling sys-

tems such as ours is less steep than that of conventional
approaches, the data collected thus far show that it is pos-
sible to make the functionality accessible in a more famil-
iar way, due to the ready analogies with the pencil-and-
paper model. Further, even from the results gathered with
our simple prototype, we can argue that the expressive-
ness in calligraphic interfaces tends to be higher than that
of WIMP approaches in that a gesture can indicate which
objects are affected, what command to perform and where
and how to show the results in one single interaction. Fur-
ther, the results in Table 1 were achieved with a very
simple command set. It is arguable that even more im-
pressive gains will be possible with a richer command set,
using polylines and other two dimensional single-stroke
figures.
Figure 9 shows how users can modify a simple model to
arrive at more complex shapes in a controlled manner,
while using an edge-modification paradigm. It illustrates
how users can change shapes by adding, removing and
changing edges from the base sketch, which are reflected
in the resulting three-dimensional geometry without any
explicit or implied solid model operations, extrusions or
pockets, allowing users to focus on the drawing task in-
stead on constructing or manipulating the geometric rep-
resentation details.

6. FUTURE WORK
Our final aim is to develop a computer application that
expeditiously allows users to generate 3D models in stan-
dard formats exportable to commercial CAD packages
from 2D freehand sketches. We use a hybrid approach to
generate models that combines the gestural commands
with geometric reconstruction algorithms to generate
normalon or quasi-normalon objects which are used as
new modeling primitives. This corresponds to a concep-
tual reduction in command set size as compared to pure
gesture systems, where complex shapes are built from a
vocabulary of basic extrusion models.
In order to reach our final goals, it would be interesting to
integrate geometric reconstruction as presented here
within a sketching application such as the GIDeS envi-
ronment to allow modeling more complex primitives to
complement GIDeS gesture alphabet.
Among future developments, it could be interesting to
export reconstructed models in other formats. We have
developed a module for writing VRML 2.0 and are cod-
ing a new module to allow exporting models in STEP
format (ISO 10303), according to application protocols
203 and 214.
Another important issue would be to extend the typology
of polyhedra reconstructed by the application, adding
other forms such as prismatic polyhedra (polyhedra
bounded by a prismatic surface and two planes, generally
parallel, that cut all the edges of the prismatic surface
generating parallelograms), or pyramidal polyhedra, in
which all faces except one meet at one point.

Figure 9: Editing a simple model

7. CONCLUSIONS
Current CAD systems are still based on the WIMP para-
digm, which makes them ill-suited for adoption at the
early stages of product and model design. At these stages
pencil-and-paper sketches are better suited to represent
the creative ideas in a fast way. Sketches and diagrams
are actually the natural communication techniques widely
used by engineers, composers, architects, artists, etc. Our
goal is to try and bridge the mental and articulation gaps
that make current CAD systems unsuited to the task. To
this end we have presented a calligraphic approach com-
bining simple commands with geometric reconstruction to
illustrate how to accomplish some of these goals in a
straightforward manner.
From the experience acquired by some of us in the last
years in the field of geometric reconstruction, the aim of
this effort is to develop an automatic application for gen-
erating geometric models from two-dimensional views.
The present work focuses on freehand sketches and draw-
ings as a way to obtain 3D geometric models. While the
prototype application provides an expeditious way of
developing such interfaces, several issues related to am-
biguous drawings in isometric perspective need to be ad-
dressed. These will be tackled by allowing other orthogo-
nal perspectives, e.g. dimetric to be used. On the other
hand a better exploitation of ambiguity as highlighted by
the GIDeS [Pereira00] system can be put to good use
here.
While much work remains to be done, preliminary results
garnered from experimenting with the current prototype
are very encouraging. The calligraphic approach to mod-

eling which allows users to focus on the drawing task
rather than on the subtleties of geometric representations
seems to offer great advantages both on lesser number of
steps as well as a more familiar approach, as compared
with current modeling systems, since it builds on skills
related to drawing sketches on paper. Further, this ap-
proach also bears the promise of a smoother learning
curve as compared to conventional CAD systems. The
results obtained so far promising as they are, constitute a
ready incentive to extend and improve our approach to-
wards more sophisticated, yet more natural modes of
modeling with computers.

8. ACKNOWLEDGEMENTS
This work was performed partially at INESC-ID with support
from FCT and EC Grant IST-2000-28169 and "Stays of Teach-
ing and Research Staff of the Polytechnic University of Valen-
cia in Prestigious Research Centers" within the program of In-
centives to Research of the U.P.V.

9. REFERENCES
[Bloomenthal98] Bloomenthal K., Zeleznik R.C. et al.

SKETCH-N-MAKE: Automated Machining of CAD
Sketches. Procs. of ASME DETC'98, 1-11, 1998.

[Clowes71] Clowes M.B. On Seeing Things. Artificial
Intelligence, 2, 79-116, 1971.

[Conesa01] Conesa J. Reconstrucción Geométrica de
sólidos utilizando técnicas de optimización. PhD
thesis, Polytechnic University of Cartagena (Spain),
November 2001.

[Conesa99] Conesa J., Company P., Gomis J.M. Initial
Modeling Strategies for Geometrical Reconstruction
Optimization-Based Approaches. Proceedings,11th
ADM International Conference on Design Tools and
Methods in Industrial Engineering. Palermo (Italia),
December 1999.

[Eggli97] Eggli L., Hsu C., Brüderlin B.D., Elber G. In-
ferring 3D Models from Freehand Sketches and Con-
straints. Computer-Aided Design, 29(2), 101-112,
1997.

[Fonseca01] Fonseca M., Jorge J. Experimental Evalua-
tion of an On-Line Scribble Recognizer. Pattern Rec-
ognition Letters, 22 (12), 1311-1319, 2001

[Goel95] Goel V. Sketches of Thought. Cambridge, MA:
MIT Press, 1995.

[Herot76] Herot C. Graphical Input through Machine
Recognition of Sketches. ACM SIGGRAPH Com-
puter Graphics, 10 (2), 97-102, 1976.

[Huffman71] Huffman D.A. Impossible objects as non-
sense sentences. In Meltzer B., Michie D. eds. Ma-
chine Intelligence No 6, Edimburgo UK. Ediburgh
University Press, 295-323, 1971.

[Igarashi99] Igarashi T., Matsuoka S., Tanaka H. Teddy:
A Sketching Interface for 3D Freeform Design. ACM
SIGGRAPH Conference Proceedings, 409-416, 1999.

[Jenkins93] Jenkins D.L., Martin R.R. The importance of
free-hand sketching in conceptual design: automatic
sketch input. Design Theory & Methodology (DTM
93), Hight T.K. y Stauffer L.A.Eds., 115-128, ASME
Vol. DE-53, 1993.

[Leclerc92] Leclerc Y., Fischler M. An Optimization-
Based Approach to the Interpretation of Single Line
Drawing as 3D Wire Frames. International Journal of
Computer Vision, 9 (2), 113-136, 1992.

[Lipson96] Lipson H., Shpitalni M. Optimization-Based
Reconstruction of a 3D Object from a Single Free-
hand Line Drawing. Computer Aided Design, 28 (8),
651-663, 1996.

[Long00] Long A.C., Landay J.A., Rowe L.A., Michiels
J. Visual Similarity of Pen Gestures. CHI’00 Proceed-
ings, 360-367, 2000.

[Marill91] Marill, T. Emulating the Human Interpretation
of Line-Drawings as Three-Dimensional Objects. In-
ternational Journal of Computer Vision, 6 (2), 147-
161, 1991.

[Negroponte73] Negroponte N. Recent advances in
sketch recognition. Proceedings of the AFIPS 1973
National Computer Conference, 663-675, 1973.

[Pereira00] Pereira J., Jorge J., Branco V., Nunes F. To-
wards calligraphic interfaces: sketching 3D scenes
with gestures and context icons. WSCG’2000. Con-
ference Proceedings, Skala V. Ed., 2000.

[Rubine92] Rubine D. Combining gestures and direct
manipulation. Procs. ACM CHI'92 Conf. on Human
Factors in Computing Systems, 659-660, 1992.

[Schweikardt98] Schweikardt E., Gross M.D. Digital
Clay: deriving digital models from freehand sketches.
ACADIA ‘98, Seebohm T. and Wyk S. V. eds., Que-
bec City, Canada, 202-211, 1998.

[Sutherland63] Sutherland I.E. Sketchpad: a man-
machine graphical communication system. Proc.
Spring Join Computer Conference. AFIPS. 329-346,
1963.

[Turner00] Turner A., Chapman D., Penn A. Sketching
space. Computers and Graphics, 24 (12), 869-879,
2000.

[Ullman90] Ullman D.G., Wood S., Craig D. The impor-
tance of drawing in the mechanical design process.
Computers and Graphics, 14 (2), 263-274, 1990.

[Wang93] Wang W., Grinstein G. A Survey of 3D Solid
Reconstruction from 2D Projection Line Drawing.
Computer Graphics Forum, 12 (2), 137-158,1993.

[Zeleznik96] Zeleznik R.C., Herndon K.P., Hughes J.F.
SKETCH: An interface for sketching 3D scenes.
SIGGRAPH’96, 163-170, 1996.

