Análisis y validación de velocidades instantáneas en flujos altamente turbulentos y aireados

Belén Molina Miñana, José María Carrillo Sánchez, Luis G. Castillo Elsidié.
Grupo I+D+i Hidr@m - www.upct.es/hidrom
Ingeniería Hidráulica, Marítima y Medio Ambiental, UPCT.
Paseo Alfonso XIII, 52, 30203 Cartagena (Murcia)
E-mail: belenmolinaitop@hotmail.com, jose.carrillo@upct.es, luis.castillo@upct.es

Resumen. La medición de velocidades instantáneas mediante instrumentación ADV (Acoustic Doppler Velocimeter) constituye una alternativa válida frente a equipos basados en la tecnología láser PIV (Particle Image Velocimetry), siendo el coste del ADV unas diez veces inferior al PIV. Sin embargo, existen algunas situaciones en que se alteran las mediciones, como es el caso de los flujos altamente turbulentos y aireados (resaltos hidráulicos) y ambigüedades por diferencia de fase (velocidad real de flujo excede el límite superior del rango de medida). En este artículo se analizan los principales filtros de datos propuestos hasta la fecha y se aplican a dos registros de velocidades obtenidos dentro de un resalto hidráulico (registrados en las mismas condiciones de flujo y en la misma posición): uno muy contaminado (registro patológico) y otro casi limpio (registro base).

1 Introducción
La medición de velocidades instantáneas mediante instrumentación ADV es de gran ayuda a la hora de caracterizar el flujo, ya sea en laboratorio o en el campo. Es muy fiable en flujos laminares y turbulentos sin la presencia de aire, puesto que el agua constituye el elemento fundamental de transmisión de la señal. Sin embargo, para el caso de flujos altamente turbulentos y aireados, las señales suelen estar afectadas, en mayor o menor grado, por la presencia de burbujas de aire que se interponen en la recepción de datos (Castillo, 2008, 2009a,b,c). Los fenómenos que interfieren alterando nuestras señales se deben fundamentalmente a tres causas:

- **Flujos con alta intensidad de turbulencia y aireados.** Registros con datos anómalos aleatorios (spikes), debidos a una mala recepción de la señal.

- **Ambigüedades por diferencia de fase.** Se producen cuando la velocidad real del flujo excede el límite superior del rango de medida. Se manifiesta con la aparición continua de spikes.

El resalto hidráulico es un caso interesante de aplicación debido a sus características particulares: flujo altamente turbulento y aireado, fuerte disipación de energía y mezcla, levantamiento brusco de la superficie libre y generación de ondas y espray.

2 Métodos de filtrado de datos
2.1 Umbral de aceleración y velocidad (ATM+C)
Para que un dato sea considerado un spike, la aceleración del flujo a_i debe exceder un umbral $|a_i|>\lambda_\alpha g$ y la desviación absoluta de la velocidad media tiene que exceder un valor $|u_i|>\sigma$, donde λ_α es un umbral de aceleración relativa, σ es la desviación estándar del registro y k un factor a ser determinado. La aceleración instantánea es

$$a_i = \frac{(u_i - u_{i-1})}{\Delta t}$$

(1)

donde u_i es la velocidad registrada en el tiempo i, y Δt el intervalo de muestreo. Nikora y Goring (2000) proponen $\lambda_\alpha=(1-1.5)$ y $k =1.5$. En resaltos hidráulicos, Castillo (2009a,b,c) propone que el valor de λ_α se calcule en función de la posición d_i del punto de medida dentro del resalto hidráulico y de su correspondiente número de Froude Fr:

$$\lambda_\alpha = Fr \frac{y_i}{\Delta t \sqrt{g}} \geq 0.5$$

(2)

El valor y_i es igual a y_{ab} cuando el flujo es hacia aguas abajo e igual a y_{ar} cuando es hacia aguas arriba (ver figura 1).

El dato anómalo se reemplaza por la media de los doce puntos que lo engloban (los seis anteriores y los seis posteriores del registro).

Figura 1. Variación del número de Froude y definición de los principales parámetros en un resalto hidráulico.
2.2 Corte inicial en función de los percentiles 99% y 1% y ajuste progresivo de los límites inferior y superior en función de estadísticos 5% y 95% (PCLU)

Dado que la distribución de velocidades en un resalto hidráulico no se ajusta a una distribución normal, es mejor estimar un umbral que tienda al límite superior de la señal registrada. El corte inicial en función de los percentiles 99% y 1% se realiza con el objeto de eliminar aquellos valores que aparecen en el registro de forma muy esporádica y cuyas amplitudes se desvían de forma exagerada con respecto al valor medio de la serie. La presencia de éstos spikes “solitarios” suelen invalidar cualquier otro procedimiento de filtrado (Castillo, 2009a,b,c).

El ajuste progresivo se basa en el corte de los límites superior e inferior, en función de los estadísticos 5% y 95%. A continuación se describe el procedimiento (Castillo, 2008):

Desde la media calculada \bar{u} y junto con el valor máximo registrado de la serie de datos u_{max} se determina una primera amplitud relativa $A_1 = u_{\text{max}} - \bar{u}$. Seguidamente se calcula el valor $u_{\text{min}} = \bar{u} - A_1$ y la amplitud general $A = u_{\text{max}} - u_{\text{min}}$. Finalmente se obtienen los valores de corte superior, $X_{\text{max},c} = u_{\text{max}} - (0.05A)$ e inferior, $X_{\text{min},c} = u_{\text{min}} + (0.05A)$.

Se recomienda no hacer más de dos filtrados para no alterar sensiblemente la serie original.

Los spikes se pueden reemplazar por el valor del corte de superior o inferior, la media, mediana o media de los doce puntos que engloban al dato eliminado, según el caso.

2.3 Umbral espacio-estado (PSTM+W)

Se basa en el concepto del mapa de representación tridimensional de Poincaré o representación Espacio-Estado, en el cual la velocidad instantáneamente analizada y sus derivadas primera y segunda son graficadas unas en función de las otras (Goring y Nikora, 2002).

Se definen como spikes aquellos puntos que se sitúan fuera de la ellipse correspondiente, cuyos ejes se determinan con el criterio Universal ($\lambda_\sigma = \sigma / 2 \ln n$), aplicado a una variable aleatoria de n datos con distribución normal, media nula y desviación estándar σ.

El método se itera hasta que no se detecten más spikes, es decir, cuando el número de datos buenos (puntos dentro de la ellipse) llegue a ser constante. Cada iteración consta de los siguientes pasos:

1. Se calcula la primera y segunda derivada con el algoritmo numérico de diferencia central:

$$\Delta u_i = (u_{i+1} - u_{i-1}) / 2$$

$$\Delta^2 u_i = (\Delta u_{i+1} - \Delta u_{i-1}) / 2$$

2. Se calculan las desviaciones estándar de las tres variables, $\sigma_{\Delta u}$, $\sigma_{\Delta^2 u}$ y $\sigma_{\Delta^3 u}$ y de aquí, los valores máximos esperados a partir del criterio Universal.

3. Se obtiene el ángulo de rotación del eje mayor del plano $\Delta^2 u = f(u_i)$, según la correlación propuesta por Goring y Nikora (2002):

$$\theta = \tan^{-1} \left(\sum \Delta^2 u_i / \sum u_i^2 \right)$$

Castillo (2009a,b,c) propone una modificación que ajusta mejor el ángulo a la pendiente natural de la muestra, a través de un ajuste de Gauss:

$$\theta = \tan^{-1} \left(\frac{n \sum \Delta^2 u_i - \sum \Delta u_i \sum \Delta^2 u_i}{n \sum u_i^2 - (\sum u_i)^2} \right)$$

4. Para cada par de variables, se calculan los ejes de la ellipse. En el plano $\Delta^2 u_i = f(u_i)$: eje mayor $\lambda_2 \sigma_{\Delta^2 u}$ y eje menor $\lambda_1 \sigma_{\Delta^2 u}$. Plano $\Delta^3 u_i = f(u_i)$: eje mayor $\lambda_2 \sigma_{\Delta^3 u}$ y eje menor $\lambda_1 \sigma_{\Delta^3 u}$.

3 Aplicaciones

Los distintos métodos han sido aplicados a dos registros, medidos en idénticas condiciones de flujo. El registro “patológico” se obtuvo con el aparato calibrado para un rango de velocidad de ±100 cm/s, de acuerdo con las indicaciones del fabricante del equipo ADV, mientras que el registro “casi limpio” o base se registró empleando un rango de ±250 cm/s. En buena práctica, el registro patológico sería rechazado; no obstante en este caso nos sirve para valorar el funcionamiento de los diversos algoritmos de filtrado. En las figuras 2 y 3 se presentan los registros de velocidades originales y filtrados (combinación de los métodos ATM+C y PCLU), mientras que en las figuras 4 y 5 se grafican los espacio-estado del registro patológico. Finalmente, en la tabla 1 se recogen los principales resultados obtenidos por la aplicación de los diferentes algoritmos.
4 Conclusiones

En el caso de flujos altamente turbulentos y aireados (resalto hidráulico), el rango de velocidad recomendado por el fabricante del ADV para las condiciones del ensayo realizado en nuestro laboratorio (±100 cm/s) no es adecuado, debiendo utilizarse el rango inmediatamente superior (±250 cm/s). De este modo, pese a incrementar el ruido blanco, no se producen los spikes debidos a la ambigüedad por diferencia de fase.

La combinación de los métodos ATM+C y PCLU, propuestos por Castillo (2008, 2009a,b,c), constituye el procedimiento más adecuado y robusto para la detección y reemplazo de spikes, en el caso de resaltos hidráulicos; así, reemplaza el menor número de datos y casi no altera la media y desviación estándar del registro original (ver tabla 1). Frente a un equipo láser, la sonda ADV junto con una correcta aplicación de las técnicas de filtrado de datos, nos ofrece una solución válida y económica, con la ventaja adicional de constituir el único medio factible en las mediciones en campo.

Referencias bibliográficas

