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ABSTRACT 

When dam overtopping produces rectangular free jets that discharge into plunge pool basins below the dam, the 
pressure and velocity distributions of the flow in the plunge pool must be estimated to evaluate potential scour that 
might destabilize the dam. The high turbulence and aeration phenomena that appear in falling jets and dissipation 
basins make it difficult to carry out studies based only on classical methodologies. This work addresses plunge pool 
flows, and compares numerical results against our own experiments. Instantaneous pressures, velocities and air 
entrainment were obtained with the use of piezoresistive transducers, Acoustic Doppler Velocimeter and optical fiber, 
respectively. Mean velocity field and turbulence kinetic energy profiles were determined. To identify the level of 
reliability of models, numerical simulations were carried out by using the “homogeneous” model of ANSYS CFX, 
together with different turbulence closures. The numerical results fall fairly close to the values measured in the 
laboratory, and with expressions for submerged hydraulic jumps and horizontal wall jets. The observations can be 
well predicted for horizontal velocities greater than 40% of the maximum velocity in each profile, and when the ratio 
of the water cushion depth to the jet thickness is lower than 20.  
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1. INTRODUCTION

In recent years, the increasing magnitude of design floods has prompted re-evaluations of spillway capacity and 
operational scenarios for large dams throughout the world. Current capacity of many spillways is inadequate, raising 
the possibility that dams might be overtopped during extreme events. This creates new loading scenarios for the dam 
and raises questions about erosion and scour downstream from the dam (Wahl et al. 2008, FEMA 2014). 

When the rectangular jet or nappe flow occurs due to overtopping, the design considerations need to ensure that most 
energy is dissipated, and that there is minimal to no erosion downstream of the dam. In other words, we need to 
estimate the hydrodynamic actions on the bottom of the basin where the jet discharges, as a function of the 
characteristics of the jet (Annandale 2006). The energy dissipation mechanisms that occur in the jet-basin structure 
can be grouped into the following: (a) aeration and disintegration of the jet in its fall, (b) air entrainment and diffusion 
of the jet into the basin, (c) impact on the basin bottom, and (d) recirculation in the basin (Figure 1). 

Two of the variables needed to be defined in the design of the jets are the issuance conditions and the impingement 
conditions.  

Issuance conditions correspond to the flow conditions at a location where the jet leaves the spillway and starts falling 
freely. In the illustrated arch dam case with an inclined crest, z = - h, where z is the vertical coordinate with origin in 
the crest weir, and h is the weir head. Similarly, in the case of flat-topped case is also considered z = - h. The 
impingement conditions correspond to the jet section before the impact with the water surface of the basin. In this 
location, the mean velocity, Vj, and the impingement jet thickness, Bj, must be defined (see Figure 1). 

This jet thickness must include the basic thickness due to gravity Bg, and the symmetric jet lateral spreading due to 
turbulence and aeration effects, ξ (Castillo et al. 2015): 
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where q is the specific flow, H the fall height, and h is the energy head at the crest weir. φ = KφTu, with Tu being the 
turbulence intensity (0.012 for inclined crest and 0.013 for a flat crest) and Kφ an experimental parameter (1.14 for 
circular jets, 1.24 for the three-dimensional nappe flow and 1.20 for the flat top case). 
 
By the way, in the case of flat-topped dams the overtopping is produced on the crest of the dam through critical flow 
conditions. In the brink the depth is approximately 0.715 yc (Rouse 1936 and Wahl et al. 2008). However, as already 
indicated, the issuance conditions are considered at z = - h.  Figures 1a and 1b show the overtopping on an inclined-
crest and a flat-crest dam, respectively. When the jet falls through a long-enough distance, the jet becomes fully 
developed (Lb).  
 

 
Figure 1. Schematic of falling rectangular jets and receiving basin. (a) Overtopping on an arch dam. (b)  

Overtopping on a gravity dam (flat top). 
 
Castillo et al. (2015) established different equations to calculate the jet energy dissipation in the air and in the water 
cushion, as a function of the Y/Bj and H/Lb ratios (where Y and H denote the depth of the water cushion at the exit and 
the total head, respectively, and Lb is the break-up length). Castillo et al. (2015) proposed the following expression for 
estimating the break-up length: 
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where Bi and Fi are the jet thickness and the Froude number in issuance conditions, respectively. K is an adjustment 
coefficient and that in the arch dam case is 0.85. If in the expression (1.b) we replacement the jet thickness Bi = q / Vi 

; velocity 𝑉𝑉𝑖𝑖 = 2�𝑔𝑔ℎ ; specific flow 𝑞𝑞 = ℎ3/2𝐶𝐶𝑑𝑑 ; Froude number 𝐹𝐹𝑖𝑖 = 𝑉𝑉𝑖𝑖/�𝑔𝑔𝐵𝐵𝑖𝑖  and we solve for the break-up length, 
then it is obtained that: 
 

        𝐿𝐿𝑏𝑏 = 𝐶𝐶𝑑𝑑
0.82ℎ0.73
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where Cd is the discharge coefficient (2.1 and 1.7 for arch dam and gravity dam (flat top), respectively). 
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Figure 2a show the sensitivity analysis of the K coefficient for a Turbulence index Tu = 0.013 (flat top case). We can 
observe that for K = 1 the break-up length is very similar to the inclined crest case (𝑇𝑇𝑢𝑢= 0.012 and K = 0.85). Since in 
this case the turbulence index is somewhat greater than in the inclined crest case, then it seems reasonable that the 
length of disintegration is less. In this way was established K = 0.95. Figure 2b confirms that in the flat top case the 
initial conditions corresponding to Tu = 0.013 and K = 0.95. 
 
 

  
 

Figure 2. Break-up length in function of weir head for arch and gravity dams. 
 
Figure 3 show the sensitivity analysis for Kφ parameter in function of relation H / h and Tu = 0.013. We can conclude 
that the jet expansion term for a flat crest case (Tu = 0.013 and Kφ =1.14) is equal to the inclined case ((Tu = 0.012 and 
Kφ =1.24). However, the jet expansion term must should be slightly higher for the flat crest case so it was established 
that Kφ =1.20 (intermediate value between a circular jet, Kφ =1.14 and a nappe flow case, Kφ =1.24).  

  
Figure 3. Jet expansion in function of the H/h relation and the Kφ parameter.                                                                                                       

 
During the falling, the energy dissipation is due to the air entrainment into the falling jet and the depth of water 
upstream of the jet. In Figure 4, the velocity Vj and the jet thickness Bj at the impingement conditions, the core depth 
or minimum depth for effective water cushion and the two principal eddies that produce the dominant frequencies in 
the plunge pool (large scale eddies and shear layer structures) are sketched. The lowest frequencies correspond to 
large scale eddies that have a dimension on the order of the plunge pool depth. Then, the recirculating velocity for 
large plunge pools is about Vr ~ 0.035 Vj and the corresponding Strouhal number of the dominant eddies is S = fY/Vj 
= (Vr/πY) (Y/Vj) ~ 0.01 (Ervine and Falvey 1987; Ervine et al. 1997). The following dominant frequency corresponds 
to eddy sizes contained in half of the shear-layer width and is proportional to the entry jet velocity; then, the Strouhal 
number of the shear-layer eddies is equal to a constant Ss = (fsY/Vj) = K3 ~ 0.25, and it coincides with the spread of the 
jet into the water cushion as shown on Figure 4 (Ervine and Falvey 1987; Ervine et al. 1997). 
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 Energy dissipation in the basin by diffusion effects can only be produced if there is an effective water cushion (Y/Bj  
> 5.5 for the rectangular jet case, Castillo et al. 2015). The instantaneous pressures signals obtained on the bottom of 
the plunge pools may be adjusted in curves for different ranges (see Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Eddy structures in effective water cushion (Y ≥ 5.5 Bj): large scale eddies size ~Y and shear layer structures 

size ~De (Castillo et al. 2016). 
 

The dynamic pressure in the bottom of the stilling basin is based on two components: the mean dynamic pressure, Cp, 
(Figure 5a) and the fluctuating dynamic pressure, Cp´, (Figure 5b). These dynamic pressure coefficients are used as 
estimators of the stream power reduction coefficients, by an effect of the jet disintegration in the air and their diffusion 
in the stilling basin. Hence, the dynamic pressures are also a function of the fall height to disintegration height ratio, 
H/Lb, and water cushion to impingement jet thickness, Y/Bj. Thus, the total dynamic pressure is expressed as: 
 

  𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐶𝐶𝑝𝑝(𝑌𝑌/𝐵𝐵𝑗𝑗)𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗 + 𝐹𝐹𝐶𝐶𝑝𝑝´(𝑌𝑌/𝐵𝐵𝑗𝑗)𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗                       (2) 
 

where Cp(Y/Bj) is the mean dynamic pressure coefficient; Cp'(Y/Bj) the fluctuating dynamic pressure coefficient; Pjet 
the stream power per unit of area, and F the reduction factor of the fluctuating dynamic pressure coefficient. In 
rectangular jet case (nappe flow), Carrillo (2014) and Castillo et al. (2015) adjusted the formulae by using new 
laboratory data (Figure 5c). 
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Figure 5. Pressure coefficients for the nappe flow case: (a) Mean dynamic coefficient, Cp. (b) Fluctuant dynamic 
coefficient, Cp'. (d) Reduction factor F of fluctuating dynamic coefficient. 

 
Within the plunge pool downstream of the impingement point, the flow resembles a flow in a submerged hydraulic 
jump and a wall jet. However, the situation is complicated here by the air entrainment. Several formulas have been 
put forward to express the horizontal velocity distribution in the vertical direction. We return to some of these formulas 
later in the paper. In Castillo et al. (2014), the so-called “homogeneous” theoretical model of CFX was employed. It 
was shown that this model is able to reproduce correctly the jet water velocity, and the averaged pressures in the 
plunge pool. There is always a challenge in modeling two-phase flows to discern which level of complexity is needed 
to represent different aspects of the flow (Bombardelli and Jha 2009). One of the objectives of this paper is to 
determine whether this theoretical model is sophisticated enough to represent velocities in the plunge pool. Continuing 
the line of research, this work presents a systematic study which considers specific flows and water cushions in the 
plunge pool. New laboratory data were obtained and new three-dimensional simulations were specifically performed 
for this work. ANSYS CFX was again selected due to the variety of turbulence closures available in the code, the 
previous experience with it and, more importantly, due to the diverse two-phase flow models embedded in the package, 
which can allow us to expand the research further in the long-term future. 
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2. EXPERIMENTAL FACILITY 

2.1. Turbulent Jet Experimental Facility  

The experimental facility was constructed at the Hydraulics Laboratory of the Universidad Politécnica de Cartagena, 
and was described in detail in Carrillo and Castillo (2015). The facility consists of a mobile mechanism which permits 
to vary the weir height between 1.7 and 3.5 m, and flows from 10 to 150 l/s. It has an inlet channel with a length of 
4.0 m and width of 0.95 m. The discharge is produced through a sharp-crested weir with a width of 0.85 m and height 
of 0.37 m. The plunge pool, in which different water cushions may be simulated, is a 1.3-m high, 1.1-m wide and 3.0-
m long methacrylate box. Turbulent kinetic energy values at the inlet channel were obtained with an Acoustic Doppler 
Velocimeter (ADV); mean velocities and air concentrations in different sections of the falling jet were acquired with 
optical fiber instrumentation; and instantaneous pressure values were measured with piezoresistive transducers located 
on the basin bottom. In addition, ADV and optical fiber were used in the basin to obtain velocity and air concentration 
profiles, respectively, downstream of the impingement point. Figure 6a shows a picture of the experimental device in 
which sizable values of air concentration are apparent. 

2.2. Optical Fiber Equipment 

To measure the air concentration at the falling jet and at the basin, an RBI-instrumentation dual-tip probe optical fiber 
phase-detection instrument was used. This equipment enables measurement in water up to 20 m/s flow velocity and 
the relative uncertainty concerning the void fraction is estimated at about 15% of the measured value (Stutz and 
Reboud 1997). The rise and fall of the probe signal corresponds, respectively, to the arrival and the departure of the 
gas phase at the tip of the sensor. The void fraction was defined as the ratio of the total time the probe is in gas (ΣtGi) 
to the experiment duration time t. Figure 6b shows the air concentration in different sections downstream of the jet 
stagnation point. The maximum air concentration is around 12% (at a distance of 21% from the bottom) for the first 
sections. However, from the section 0.30 m and a distance from the bottom smaller than 70%, the air concentration is 
below 10%. Concentrations remain high still at the upper portion of the water depth in the basin. 
 

 
Figure 6.  (a) Device of turbulent jets. (b) Air concentration in the basin for different sections downstream of the jet 
stagnation point. Measurements obtained by means of an optical fiber (q = 0.082 m2/s, H = 2.19 m, and Y = 0.32 m). 

2.3. Acoustic Doppler Velocimeter (ADV) 

In order to characterize the macro turbulence of the flow in the plunge pool, 5000 values were recorded in each 
measured point by using a frequency of 10 Hz (more than eight minutes of observation). In this way, 2006 points in 

(a) (b)



 

the symmetrical vertical plane of the basin were obtained. As the flows are highly turbulent, the values obtained with 
ADV may be affected by spurious signals or “spikes”. Furthermore, in this particular case, the air may also affect the 
signal of the ADV. Frizell (2000) experimented with the air effect, measuring concentrations varying from 0 – 3.61%. 
As the air concentrations increase and bubble sizes increase, correlation values drop dramatically as the acoustic 
signals used by the probe are absorbed and reflected by the two-phase flow mixture. Matos et al. (2002) also found 
that air bubbles affect the accuracy of velocity measurements taken with the ADV. However, their experimental results 
suggest that the ADV can provide reasonable estimates of the velocity for low air concentrations up to 8%. 

3. MATHEMATICAL AND NUMERICAL MODELING 

As can be seen from Figure 6, the flow conditions in the plunge pool are such that the air concentrations are relatively 
elevated at the point of jet impingement and nearby areas and in the top layer of the water depth. In these areas, there 
is a mostly non-dilute, two-phase flow. However, as we move far from the impingement point, the flow conditions 
tend to become quasi-dilute. That is why we decided to solve the equations for the conservation of mass and 
momentum for the mixture, which may be written in compact form (ANSYS CFX Manual 2015) as: 
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where  is the transported quantity, i and j are indices which range from 1 to 3, xi represents the coordinate directions 
(1 to 3 for x, y, z directions, respectively), and, t the time. In turn, ߩ ൌ ∑ ௞ݎ
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the transported quantity for phase k, Np denoting the number of phases and S indicating the sources/sinks for the 
transported quantity (ANSYS CFX Manual 2015). In this model, phases share the same velocity field. When   = 1, 
S = 0, and Γ = 0, the mass conservation equation is recovered, and when  = Ui, the momentum equation is recovered, 
with its corresponding source terms to account for the Reynolds stresses. 

 
The theoretical model comes as a result of the addition of the equations of the two phases (Drew and Passman 1999; 
ANSYS CFX Manual 2015). Further, K = . Rigorously speaking, models like this have been found to provide 
adequate predictions only in relatively-dilute mixtures. For larger concentrations they found that the velocity 
distribution could not be well predicted relatively far from the wall with mixture models. Thus, we expect the 
“homogeneous” model to be able to represent rather adequately those areas in which air concentrations are not that 
high. As said, the code ANSYS CFX has been used, which is based on an element-oriented, finite-volume method 
(FVM). It allows different types of volumes, including tetrahedral and hexahedral volumes. Solution variables are 
stored at the nodes (mesh vertices). More details are given in the ANSYS CFX Manual (2015). 

3.1. Turbulence Models 

In this work, one of the most usual two-equation turbulence models have been tested for the free falling jet and basin 
case. Two-equation models use the gradient diffusion hypothesis to relate the Reynolds stresses to the mean velocity 
gradients and the turbulent viscosity. The eddy viscosity hypothesis considers that eddies behave like molecules and 
the Boussinesq model assumes that the Reynolds stresses are proportional to the mean velocity gradients, as follows 
(Pope 2000): 
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with µt being the eddy viscosity or turbulent viscosity, k ൌ 1/2ሺuన'uన' ሻതതതതതത is the turbulent kinetic energy and δij the 
Kronecker delta. The k-ω based Shear-Stress Transport (SST) model (Menter 1994) assumes that the eddy viscosity 
is linked to the turbulence kinetic energy, k, and the turbulent frequency, ω, as ݐߤ ൌ ߩ

݇

߱
. The SST model takes into 



 

account the accuracy of the k-ω model in the near-wall region and the free stream independence of the k-ε model in 
the outer part of the boundary layer. It is considered as a hybrid model (see Rodi et al. 2012). 

3.2. Free surface modeling 

The Free Surface model assumes that each control volume contains three possible conditions: 
 rk = 0 if cell is empty (of the k-th fluid); 
 rk = 1 if cell is full (of the k-th fluid); 
 0 < rk < 1 if cell contains the interface between the fluids. 

 
Tracking of the interface between fluids is accomplished by the solution of the volume fraction equation.  

4. MODEL IMPLEMENTATION IN THREE DIMENSIONS 

The model boundary conditions corresponded to the turbulence kinetic energy at the inlet obtained with ADV (located 
0.50 m upstream of the weir), the upstream and downstream water levels and their hydrostatic pressure distributions. 
ANSYS CFX has different treatments near the wall. ω-based turbulence models (e.g. SST) use automatic wall 
functions which switch between regular wall functions (Pope 2000) and low-Reynolds wall treatment (Menter 1994). 
Considering the wall treatment used by ANSYS CFX, the mesh sizes close to the solid boundary were smaller than in 
the rest of the domain. Values of y+ were smaller than 40. The symmetry condition in the longitudinal plane of the 
plunge pool was used. 
 
The inlet condition considers the volumetric flow rate with a normal direction to the boundary (q = 0.082 m2/s, q = 
0.058 m2/s, q = 0.037 m2/s, q = 0.023 m2/s) and the water level height at the upstream deposit (2.313 m for q = 0.082 
m2/s, 2.285 m for q = 0.058 m2/s, 2.263 m for q = 0.037 m2/s, 2.237 m for q = 0.023 m2/s). The outlet condition was 
considered with flow normal to the boundary and hydrostatic pressure. The water level height at the outlet was 
modified according to the water cushion depth, Y, in the laboratory device. For all walls of the upper deposit, the weir 
and the dissipation basin, no slip smooth wall conditions were considered. The roughness of methacrylate was 
indicated in the walls. In the transverse direction, wall boundary conditions were used. 

4.1. Mesh-Independence Tests 

In Figure 7a, the simulations result for the different mesh sizes (5, 7.5, 10, 12.5 and 15 mm) in the free falling jet, 
obtained as a function of the vertical distance to the weir in terms of the flow velocities in the jet, are shown. 
Differences in velocities with the optical fiber measurement are smaller than 2% in all the cases (Castillo et al. 2014). 
From the analysis of Figure 7b, it can be concluded that mesh-independence is reached with an element size of 10 
mm. The results are in agreement with previous results obtained on pressures at the stagnation point (Castillo et al. 
2014). In this way, the mesh size of 10 mm seems to be valid for the flow rates analyzed. 

4.2. Convergence Criteria 

To judge the convergence of iterations in the numerical solution, we monitored the residuals. The solution is said to 
have converged in the iterations if the scaled residuals are smaller than fixed values ranging between 10-3 and 10-6. In 
this work, the residual values were set to 10-4 for all the variables. With this choice and for 791,354 elements (255,776 
in the falling jet), the mean computational time was 7.2x105 seconds (≈ 8.3 days), using a Central Processing Unit 
(CPU) with sixteen processors (Intel® Xeon® E5-2699 v3 @ 2.30 GHz). 
 



 

 
 

 
 
 

Figure 7. (a) Velocities and (b) Volume fractions as a function of the mesh size;                                                                                
q = 0.058 m2/s, h = 0.095 m. 
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5. RESULTS AND DISCUSSIONS 

5.1. Velocity and Turbulent Kinetic Energy Distribution in the Plunge Pool 

We can compare the velocity profiles in the forward flow if they are normalized with a velocity scale equal to the 
maximum velocity, Vmax, at any section, and with a length scale δl equal to the elevation y from the bottom where the 
local velocity V = Vmax /2, and the velocity gradient is negative (see Figure 8). 

 
 

Figure 8. Velocity distribution sketch for submerged jumps (adapted from Wu and Rajaratnam 1996). 
 

Velocities at different cross sections of the plunge pool located downstream of the stagnation point were measured 
with ADV. Results for the same cross sections were obtained from the CFD simulations (Castillo et al. 2016). The 
velocities have been made dimensionless by using the maximum horizontal velocities in each cross section, Vmax,x 
(Figure 9a). In addition to the mean velocities, the turbulent kinetic energy profiles were also compared (Figure 9b). 
In general, the results from the numerical simulations show the same behavior as the results obtained in the laboratory. 
Differences are important close to the stagnation point, where the numerical model may not obtain accurate results 
due to the relatively important air entrainment into the plunge pool (Figures 6a and 6b). 
 

 

 
 
 

y0

y2

Vj

δl δmax

y

V=Vmax/2
Vmax

Bj

y3
y4

Wall jet

0

20

40

60

80

100

-0.25 0.00 0.25 0.50 0.75 1.00 1.25

%
 d

ep
th

 

Vx/Vmax, x

SST LAB X=0.40 m

LAB X=0.50 m

LAB X=0.60 m

LAB X=0.70 m

LAB X=0.80 m

CFD X=0.40 m

CFD X=0.50 m

CFD X=0.60 m

CFD X=0.70 m

CFD X=0.80 m

(a)



 

 
 

Figure 9. (a) Horizontal velocity profiles in the plunge pool downstream of the stagnation point. (b) Turbulent 
kinetic energy profiles. SST model (q = 0.082 m2/s, H = 1.993 m, Y = 0.32 m). 

 
Following Wu and Rajaratnam (1996), Figure 10a shows the results of the characteristic length obtained through the 
plunge pool. For each horizontal velocity profile measured with the ADV, the length scale δl was obtained in each 
section. Data have been classified as a function of the ratio water depth in the plunge pool/impingement jet thickness 
of each test. For ratios Y/Bj up to 20, the behavior is similar to that found in wall jets. 
 
The values for water cushion depths Y/Bj up to 30 tend to fall within one standard deviation of the mean value. 
However, for larger water cushion depths, the characteristic length is higher. In this type of submerged hydraulic jump 
where the falling jet enters almost vertical, an equation may be obtained with the data that fall within one standard 
deviation of the mean value: 

 
  𝛿𝛿𝑙𝑙

𝐵𝐵𝑗𝑗
= 0.465 𝑋𝑋

𝐵𝐵𝑗𝑗
+ 2.415         (5) 

 
 
 
 
 
 

                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

20

40

60

80

100

0.00 0.20 0.40 0.60 0.80 1.00

%
 d

ep
th

 

k / kmax

SST
LAB X=0.40 m

LAB X=0.50 m

LAB X=0.60 m

LAB X=0.70 m

LAB X=0.80 m

CFD X=0.40 m

CFD X=0.50 m

CFD X=0.60 m

CFD X=0.70 m

CFD X=0.80 m

(b)

(a)



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. (a) Characteristic length δl in submerged hydraulic jumps. (b) Non-dimensional profiles of the horizontal 

velocity in the central vertical plane of the plunge pool. 
 
Figure 10b shows the velocity profiles obtained from the numerical simulations as well as the laboratory measurements 
in the laboratory, together with equations proposed by diverse authors for horizontal wall jets (Castillo et al. 2016). 
The overall behavior of the observations can be predicted rather well by existing equations up to 𝑦𝑦/𝛿𝛿1 ≈ 1.5. 
Disagreements appear when ratio Vx/Vmax < 0.4. This seems to be related to the angle of impingement of the jet. In 
hydraulic jump studies, the wall jet is horizontal, while the impingement free falling jet enters almost vertical. The 
higher scatter occurs when the water cushion depth is Y/Bj > 20. In this way, the self-similarity disappears when the 
velocity profiles are close to the stagnation point and when a very submerged condition is obtained for the hydraulic 
jump. With all data, a new regression is proposed for submerged hydraulic jumps downstream of the impingement 
point: 
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This proposed function is the separation line between the profiles in which there is negative recirculation flow and the 
profiles in which the flow is moving towards downstream.  
 
For the range of flows and water cushions analyzed, the limit between both behaviors seems to be located at 0.2-0.3 
m downstream of the stagnation point. 
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5.2. Energy dissipation in the plunge pool 

In a horizontal channel, the total energy variation between the sections located upstream and downstream of the 
submerged hydraulic jump are, by definition: 
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where y3 and y4 are the water depths upstream and downstream of the submerged hydraulic jump generated by the jet. 
By using Eq. (9) with the continuity equation, the energy dissipation may be obtained as (Othsu et al. 1990) 
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where H0 is the energy upstream of the hydraulic jump, and y0 and Fr0 the water depth and Froude number in the 
upstream section of the hydraulic jump. When y3 = y0 and y4 = y2, the free hydraulic jump expression is recovered. 
 
Figure 11a shows the contrast between the relative energy dissipation and the Froude number at the jet impingement 
condition, 𝐹𝐹𝑗𝑗 = 𝑉𝑉𝑗𝑗/�𝑔𝑔𝐵𝐵𝑗𝑗 , obtained from experiments. In addition, results coming from the use of Eq. (10) have been 
included as a function of the ratio between the upstream water depth and the impingement jet thickness (y3/Bj). In the 
laboratory device, the impingement Froude number is between 13 and 20 for the impingement jet thickness of 0.015 
m plotted in Figure 11b. In general, tests carried out show an energy dissipation larger than 75% of the impingement 
jet energy. This ratio increases when the ratio y3/Bj decreases (Castillo et al. 2016). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Relative energy dissipation in the plunge pool: (a) in function of the impingement Froude number.               
(b) in function of the ratio y3/Bj for the cases Bj = 0.015 m and Fj = 13-20. 
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6. CONCLUSIONS 

Observing and predicting two-phase flows in hydraulic structures is very complicated due to the rather non-dilute 
nature of the flow. Under non-dilute conditions, both experiments and simulations cannot be expected to lead to clean 
comparisons. In this work, mean velocity and turbulent kinetic energy profiles have been analyzed in a plunge pool 
located downstream of a rectangular free-falling jet. In general, the CFD simulations provided results fairly close to 
the values measured in the laboratory, and to the formulas proposed by diverse authors, in spite of having used a 
simple two-phase flow model. “Homogeneous” model seems to be able to predict rather well areas in which air 
concentration is not very high. However, in the highly aerated regions rather strong differences appear. 
It was possible to propose a single mean velocity distribution law for ratios Vx/Vmax ≥ 0.40. For smaller values, there 
are necessarily diverse distribution laws. 
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