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Multi-objective optimization
Pareto frontier

The goal of Multi-objective optimization is to find a collection of solutions that
form trade-offs between the multiple objectives.
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How to solve MOOP problem
Scalarizing methods

weighted-based methods
constraint-based methods

Multi-objective evolutionary
algorithms (MOEAs)

J. Martı́nez & P. Martı́ (Structural Optimization Group UPCT) OPTI, 20-22 June 2012, New Forest, UK 4 / 18



Outline
MORO

K-MORO
Numerical application

Conclusion

Multi-objective optimization problem (MOOP)
Handling uncertainty and robustness in MOOP
Expectation-variance based approach

Multi-objective optimization
Robust solutions

In real-world optimization problems, the optimal performance obtained using
conventional deterministic methods can be dramatically degraded in the
presence of sources of uncertainty.

P̃1 P̃2

Sources of uncertainty
Applied loads

Spatial positions of joints

Section properties

Material properties
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Multi-objective optimization
Robust solutions

The optimal performance obtained using conventional deterministic methods
can be dramatically degraded in the presence of sources of uncertainty.
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Sources of uncertainty

10% variability in Young’s
modulus

5% variability in Areas

1% variability in position of
joint 2

±5◦ variability in the
orientation of loads
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Multi-objective Robust optimization
Expectation-variance based approach

Probabilistic approach
The structural robustness is evaluated by the measure of the performance
variability around the expected value.

min
x∈Rn
{µf1(x) + kσf1(x), . . . , µfn(x) + kσfn(x)} (n ≥ 2, k ≥ 0)

s.t . µgj (x) + kσgj (x) ≤ 0 j = 1, · · · ,mi (1)

xlower ≤ x ≤ xupper

Varying the value of k , different levels of robustness can be obtained.

The nested relationship between uncertianty quantification and
optimization can lead to an intractable problem.
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Multi-objective Robust optimization
Metamodel-based approach

Objective
To efficiently include the uncertainty quantification in the optimization process
using mathematical approximations called metamodels.

Optimizer

UQ

xk

f(xk, ξ)

Simulator

ξ

µ(f(xk, ξ))
σ(f(xk, ξ))

xk ⇒vector of optimization variables at iter. k .
ξ ⇒ vector of random variables.

Metamodel

optimizer

UQ

xk µ̂(̂f (x, ξ)k)

f̂(x, ξ)ξ

Simulator

Level 2

Metamodel
Level 1

σ̂(̂f(x, ξ)k)
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Kriging models
Proposed approach

Meta-modelling

Consist of replacing a computationally expensive simulation model by a
mathematical approximation which is much faster to evaluate.

True function (simulator) Metamodel

1 To sample the function to be predicted.
2 To create a mathematical approximation using statistical considerations.
3 To evaluate the accuracy of the mathematical model.
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Meta-modelling
Kriging models

Kriging model

Kriging models assume that the simulator can be approximated by a sample
path of a Gaussian stochastic process G (x)

Prior mean Prior covariance function

E [G (x)] = f (x)T β Cov [G (x),G (x′)] = α2exp(
n∑

i=1

−
|xi − x′i |

s

φi
)

The parameters β, α2 and φ are unknown a priori and are determined from
the set of simulator responses

ŷ(x) ≡ E[G (x)|Y ] = f (x)Tβ̂ + r(x)TR−1(Y T − Fβ̂)
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Proposed approach

Kriging-based Multi-objective Robust Optimization (K-MORO)

The proposed method consists of two-stage framework:

1 To replace the expensive simulator by a Kriging model to carry out the
Monte-Carlo analysis.

2 To approximate the statistical moments of both the objective functions
and the constraints on the design domain.

UQ
(Monte-Carlo)
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The proposed method consists of two-stage framework:

1 To replace the expensive simulator by a Kriging model to carry out the
Monte-Carlo analysis.

2 To approximate the statistical moments of both the objective functions
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Optimizer
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Two-bar truss structure

Problem definition
two-bar truss structure (Messac et al., 2002)

min
d,H
{µvolume + k σvolume, µdeflection + k σdeflection}

s.t . g1 = µS + k σS 6 Smax

g2 = µS + k σS 6 Scrit

20 ≤ d ≤ 80, 200 ≤ H ≤ 1, 000

Design variables:

Structure height (H).

Cross section diameter (d).

Random parameters:

Vertical force (P).

Structure width (B).

Elastic modulus (E).

Member thickness (t).

d

t

Section A-A

H

P

2B

A

A
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Two-bar truss structure

Stochastic Meta-models deflection
Design Of Experimets

Latin Hypercube Sampling
design variable domain (H, d)

(30 points)
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Stochastic Meta-models deflection
Uncertainty quantification

Latin Hypercube Sampling
design variable domain (H, d)

(30 points)
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For each design point (Hi , di ) statistical
moments are obtained using Monte Carlo
simulation (105 points)
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Stochastic Meta-models deflection

µdeflection

R2 = 0.998
Latin Hypercube Sampling

random variable domain (P,B,E , t)
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Two-bar truss structure

Multi-objective optimization
Robust Pareto fronts & contours of volume

Robust Pareto fronts (determistic, σ, 2σ, 3σ)
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Concluding remarks

The use of Metamodels breaks the nested relationship between the
optimization and the uncertianty quantification, allowing us to:

1 Considerably reduce the number of simulator calls compared with the
nested approach (in the proposed example was 6 orders of magnitud
lower).

2 Obtain multiple solutions to the MORO problem with different levels of
robustness without additional simulator calls.

3 Re-use the metamodels in new optimization processes or
computationally demanding applications.

Future works:
1 High-dimensional structural problems.
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Thanks for your attention!
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