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Multi-objective optimization problem (MOOP)
Handling uncertainty and robustness in MOOP
Expectation-variance based approach

Multi-objective optimization
Pareto frontier

The goal of Multi-objective optimization is to find a collection of solutions that
form trade-offs between the multiple objectives. J

How to solve MOOP problem
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Multi-objective optimization
Robust solutions

Multi-objective optimization problem (MOOP)

Handling uncertainty and robustness in MOOP
Expectation-variance based approach

In real-world optimization problems, the optimal performance obtained using
conventional deterministic methods can be dramatically degraded in the
presence of sources of uncertainty.

Sources of uncertainty
@ Applied loads

J. Martinez & P. Marti (Structural Optimization Group UPCT)

[m]

=)
OPTI, 20-22 June 2012, New Forest, UK

A2 N e




Robust solutions

Multi-objective optimization

Multi-objective optimization problem (MOOP)

Handling uncertainty and robustness in MOOP
Expectation-variance based approach

In real-world optimization problems, the optimal performance obtained using
conventional deterministic methods can be dramatically degraded in the
presence of sources of uncertainty.

Sources of uncertainty

@ Spatial positions of joints
@ Section properties
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Robust solutions

Multi-objective optimization

Multi-objective optimization problem (MOOP)

Handling uncertainty and robustness in MOOP
Expectation-variance based approach

In real-world optimization problems, the optimal performance obtained using
conventional deterministic methods can be dramatically degraded in the
presence of sources of uncertainty.

Sources of uncertainty

@ Material properties

J. Martinez & P. Marti (Structural Optimization Group UPCT)

[m]

=)
OPTI, 20-22 June 2012, New Forest, UK

A2 N e




Multi-objective optimization problem (MOOP)
Handling uncertainty and robustness in MOOP
Expectation-variance based approach

Multi-objective optimization
Robust solutions

The optimal performance obtained using conventional deterministic methods
can be dramatically degraded in the presence of sources of uncertainty.

Sources of uncertainty

@ 10% variability in Young’s
modulus

@ 5% variability in Areas

displacement (m)
&

@ 1% variability in position of
joint 2

@ +5° variability in the
orientation of loads
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Multi-objective Robust optimization
Expectation-variance based approach

Multi-objective optimization problem (MOOP)

Handling uncertainty and robustness in MOOP
Expectation-variance based approach

Conclusion

Probabilistic approach

The structural robustness is evaluated by the measure of the performance
variability around the expected value.

)[2]'1{1 {Nﬁ(x) + k0'f1(x), s Hfyx) kdfn(x)} (n>2,k>0)
S.t. Hg;(x) + kO'gj(x) <0 j=1,---,m;

(1)
xlower S X S xupper

@ Varying the value of k, different levels of robustness can be obtained.

@ The nested relationship between uncertianty quantification and
optimization can lead to an intractable problem.
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Multi-objective Robust optimization
Metamodel-based approach

Multi-objective optimization problem (MOOP)
Handling uncertainty and robustness in MOOP
Expectation-variance based approach

Objective
To efficiently include the uncertainty quantification in the optimization process
using mathematical approximations called metamodels
AE(x, €)%
w(f xk,f Metamodel ~(F
- vire9) o
§ £(x*,¢) UQ '
- {ER9)
Metamodel
Level 2
x¥ =vector of optimization variables at iter. k
& = vector of random variables
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Kriging models

Proposed approach

e Kriging-based Multi-objective Robust Optimization (K-MORO)
Kriging models
Proposed approach
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Numerical application

Conclusion
Meta-modelling

Consist of replacing a computationally expensive simulation model by a
mathematical approximation which is much faster to evaluate. J

True function (simulator)

Metamodel

Hra)

@ To sample the function to be predicted.

@ To create a mathematical approximation using statistical considerations.
© To evaluate the accuracy of the mathematical model.
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Meta-modelling
Kriging models

Kriging models
Proposed approach

Kriging model

path of a Gaussian stochastic process ¢(x)
Prior mean

Kriging models assume that the simulator can be approximated by a sample

Eg(x) =f(x)' B

Prior covariance function

Cov[#(x), 4 (x')] = a%exp(>_ — I
i=1

The parameters 3, o and ¢ are unknown a priori and are determined from
the set of simulator responses

_Xi/|5
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§(x) = B ()| %] = f(0)" B+ r(x)'R™ (2" — FB)
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Conclusion

Kriging-based Multi-objective Robust Optimization (K-MORO)

The proposed method consists of two-stage framework:

@ To replace the expensive simulator by a Kriging model to carry out the
Monte-Carlo analysis.

@ To approximate the statistical moments of both the objective functions
and the constraints on the design domain.

i UQ
k i DS (Monte-Carlo)
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Kriging-based Multi-objective Robust Optimization (K-MORO)

The proposed method consists of two-stage framework:

@ To replace the expensive simulator by a Kriging model to carry out the
Monte-Carlo analysis.

@ To approximate the statistical moments of both the objective functions
and the constraints on the design domain.

, Optimizer
; el (MOEA)
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Two-bar truss structure

Numerical application
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Two-bar truss structure

Numerical application

Problem definition
two-bar truss structure

(Messac et al., 2002)

T'ﬂ {1volume + K Tvolume, Hdefiection + K T deflection }
s.t. g1 = H5+k0's < Smax
92 = ps +k os < Sgrit
20 < d < 80, 200 < H < 1,000
Design variables:

@ Structure height (H).

@ Cross section diameter (d).
Random parameters:
@ Vertical force (P).
@ Structure width (B).
@ Elastic modulus (E).

@ Member thickness (t).

I
Section A-A
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Two-bar truss structure

Numerical application

Problem definition
two-bar truss structure

(Messac et al., 2002)

T'L‘ {.U'volume + K Tyoumes Mdeflection + K 7 defleclion}
s.t.g1 = us+ Kk os < Smax
92 = ps +k os < Sgrit
20 < d < 80, 200 < H < 1,000
Design variables:

@ Structure height (H).

@ Cross section diameter (d).
Random parameters:
@ Vertical force (P).
@ Structure width (B).
@ Elastic modulus (E).

@ Member thickness (t).

I
Section A-A
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Two-bar truss structure
Numerical application

Stochastic Meta-models deflection
Design Of Experimets

Latin Hypercube Sampling

Latin Hypercube Sampling random variable domain (P, B, E, t)

design variable domain (H, d)
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Numerical application

Conclusion

Stochastic Meta-models

Two-bar truss structure

deflection

Uncertainty quantification

Latin Hypercube Sampling
design variable domain (H, d)

(30 points)
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Latin Hypercube Sampling
random variable domain (P, B, E, t)

(20 points)

For each design point (H;, d;) statistical
moments are obtained using Monte Carlo
simulation (10° points)
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K-MORO Two-bar truss structure

Numerical application
Conclusion
Stochastic Meta-models deflection

Hdeflection Latin Hypercube Sampling
R? = 0.998 random variable domain (P, B, E, t)
o (20 points)

deflection

K deflection
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Two-bar truss structure

Numerical application

Multi-objective optimization
Robust Pareto fronts & contours of volume

Feasible region
o

Robust Pareto fronts (determistic, o, 20, 30)

Deflection

nested approach(o ), metamodel-based approach (2).
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Concluding remarks

The use of Metamodels breaks the nested relationship between the
optimization and the uncertianty quantification, allowing us to:

@ Considerably reduce the number of simulator calls compared with the

nested approach (in the proposed example was 6 orders of magnitud
lower).

© Obtain multiple solutions to the MORO problem with different levels of
robustness without additional simulator calls.

© Re-use the metamodels in new optimization processes or
computationally demanding applications.

Future works:
@ High-dimensional structural problems.
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Conclusion

Thanks for your attention!
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