

DISEÑO ÓPTIMO DE UNIONES SEMIRRÍGIDAS MEDIANTE SIMULACIÓN NUMÉRICA Y MODELOS KRIGING

2011 ANSYS Iberian conference, Madrid 22 y 23 de Noviembre

- 2 Modelo de Elementos Finitos
- 3 Explotación de modelos de simulación de alto coste computacional
- 4 Exploración del espacio de diseño mediante el uso de Meta-modelos
- 5 Optimización Multi-objetivo de uniones semirrígidas
- 6 Conclusiones

Grupo de Optimización Estructural

Mejores Diseños & Menores Costes

Mejores Diseños & Menores Costes

Motivación

Mejores Diseños & Menores Costes

META-MODELOS + CÁLCULO DISTRIBUIDO

Exploración y optimización de modelos de elementos finitos de alto coste computacional mediante la utilización de Meta-modelos y explotación del cálculo distribuido (Centro de Supercomputación Ben Arabí) en el entorno ANSYS Workbench.

Grupo de Optimización Estructural

Modelo de Elementos Finitos

Modelización de uniones semirrígidas mediante Elementos Finitos

En la actualidad, el método de los elementos finitos está ampliamente aceptado como la técnica más eficaz para obtener soluciones numéricas de problemas estructurales.

Ventajas

- Determinar el comportamiento rotacional de la unión.
- Evitar la necesidad de ensayos experimentales.
- Generar estudios paramétricos.
- Posibilitar el estudio de efectos locales difícil de determinar experimentalmente con suficiente precisión.

Modelo de elementos finitos. Características del MEF

 En el presente trabajo se ha utilizado un modelo de elementos finitos desarrollado en código APDL de una unión semirrígida con chapa de testa extendida.

Modelo de elementos finitos. Características del MEF

Componente	Elemento				
Viga Columna Chapa de testa Soldadura Tornillos	SOLID45 Hexaédrico de 8 nodos, 3 gdl por nodo, integración completa, funciones de forma auxiliares incompatibles, grandes deformaciones y desplazamientos, y contacto				
Contacto Superficie- superficie	CONTAC173 Elemento 3D de 4 nodos TARGET170 Superficie principal asociada al elemento de contacto				
Pretensado de los tornillos	PRETS179 1 gdl en la dirección del pretensado				
	Estadística				
Elementos	53903				
Nodos	71076				
gdl	193279				

9

Laboratorio Virtual

Explotación de modelos de simulación de alto coste computacional

Explotación de modelos de simulación de alto coste computacional. Metodología

Explotación de modelos de simulación de alto coste computacional. Metodología

Optimización Estructural

Explotación de modelos de simulación... Goal Driven Optimization

Explotación de modelos de simulación... Selección de Variables de diseño

Proje	ect Schematic	Properties: No data									
							A	В	С	D	
		•		<i>.</i>		1	APDL Parameter 📮	Initial Value	Input	Output	
		Importac	cion del	codi	go APDL	26	CUST			V	
				27	D0	0					
	2 Analysis 7	28	D1	0							
	> 3 lpd Parameters					29	D2	0			
	Modelo Unión viga-columna					30	D3	0			
						31	D4	0			
						32	D5	0			
		V				33	DB	0			
(p.	Parameter Set					34	DB_V	15.111	V		
						35	DEF_H	0			
1	ID .	Parameter Name	Value	Unit		36	DEF_M	0			
2	Input Parameters					37	DENSIDAD	0			
3	Modelo Union viga-columna (A1)					38	DFUY	0			
4	р Р2	DB_V	15.111			39	DHB	41			
5	b P4	PX V	99.219			40	DNB	41			
6	lo P6	TEP V	19.815			41	DRB	0			
*		New pame	New expression			42	DUCT				
8	Output Parameters	Norrhano	Non expression	- 1		43	5	75			
· ·	 Modelo Unión viga-columna 					49	с с и	/5			
9	(A1)					46	51	0			
10	P7	SJINI	7			47	E2	0			
11	P8	MJRD	7			48	E3	0			
12	P9	DUCT	7			49	ECT	0			
13	P10	CUST	7								
*	P New output parameter		New expression		Selecció	on d	e variable	s y res	spue	esta	S
15	Charts						del nroble	ma	•		
							rei hionie	IIIa			

Explotación de modelos de simulación... Selección de Variables de diseño

Configuración inicial:

- Viga: IPE300
- Columna: HE160B
- Acero S 275: Módulo de elasticidad: *E* = 210000 MPa. Coeficiente de Poisson: *v* = 0.3.
- Tornillos:

Calidad 10.9 Fuerza de pretensado $F_{\rm p} = 0.7 f_{\rm u} A_{\rm s}$

Variables de diseño:

 $\begin{array}{l} 12 \ \mathrm{mm} \leq \mathrm{d}_b \leq 27 \ \mathrm{mm} \\ 10 \ \mathrm{mm} \leq \mathrm{t}_{ep} \leq 25 \ \mathrm{mm} \\ 85 \ \mathrm{mm} \leq p_{_X} \leq 150 \ \mathrm{mm} \end{array}$

Explotación de modelos de simulación... Selección de respuestas

Respuestas:

- 1. Momento resistente.
- 2. Rigidez inicial.
- 3. Rotación máxima.
- 4. Coste.

- C_p coste de la chapa de testa cortada, taladrada, tratada y puesta en obra.
- C_t coste de los tornillos puesto en obra.
- $C_{\rm s}$ coste de la soldadura acabada.

 $C_{u} = C_{p} + C_{t} + C_{s} + C_{m}$

- C_m coste del montaje de la chapa de testa en la viga.

Explotación de modelos de simulación... Diseño de Experimentos

Table of	Schematic B2: Design of Experiments							nents	- + ×	
	A	В	с	D	E	F	G	н 🔺	-	в
1	Name 🗦	P2 - DB_V 💽	P4 - PX_V 💌	P6 - TEP_V 💽	P7 - SJINI 📃	P8 - MJRD 💌	P9 - DUCT 💌	P10 - CUST 💌		Value
2	1	12	85	10	1	7	7	7		
3	2	12	150	10	4	7	7	1		Design of Experiment
4	3	12	109.43	13.723	4	4	9	4		GDO
5	4	12	85	25	4	9	7	7		
6	5	12	150	25	7	7	7	7	r DX	
7	6	12.106	111.28	19.362	9	7	7	7		
8	7	12.213	136.17	19.787	4	7	7	7		
9	10	12.532	121.88	18.298	4	7	7	4		Custom
10	11	12.638	123.72	23.191	7	7	7	7		Central Composite Design
11	13	12.851	103.9	11.809	7	7	7	7		Optimal Space-Filling Design Box-Behnken Design
12		12.957	105.28	16.809	4	7	7	7		Custom
13		IBMAD	107.13	22.34	4	7	7	9		Custom + Sampling Sparse Grid Initialization
14	16	13.17	129.72	12.128	4	7	7	7		
15	18	13.383	132.94	22.66	4	7	7	7		
16	19	13.489	92.376	14.574	4	7	7	7		
17	20	13.596	93.759	20.213	9	7	7	9		
18	22	13.809	115.89	14.894	4	4	1	4		
19	23	13.915	117.27	20.532	4	7	7	7		
20	24	14.021	119.11	24.574	4	4	1	1		
21	25	14.128	139.4	15.213	4	7	7	1		
22	26	14.234	140.78	20.851	4	9	7	4		
23	27	14.34	99.291	10.851	4	7	7	7		
24	28	14.447	100.67	15.638	4	4	4	4		
25	29	14.553	102.06	21.277	1	1	1	1		
26	30	14.66	125.11	11.17	4	7	4	4		
27	31	14.766	126.49	15.957	4	4	4	4		
28	32	14.872	127.87	21.596	1	4	4	1		
29	33	14.979	145.39	11.489	4	9	4	1		
30	34	15.085	146.31	16.277	1	1	4	1		
31	35	15.191	147.7	21.915	1	1	1	1		
32	36	15.298	88.227	13.404	1	1	7	7		
33	37	15.404	89.61	19.043	1	1	1	1		
34	38	15.511	90.993	23.723	1	1	9	9	·	
•			· · · · · · · · · · · · · · · · · · ·							

Explotación de modelos de simulación... Diseño de Experimentos

Table of	Schematic B2: Design of Experime	ients							→ 中 >	nents	→ ₽ ×
	A		В	с	D	E	F	G	н _	•	в
1	Name	÷.	P2 - DB_V 💌	P4 - PX_V 💌	P6 - TEP_V 💌	P7 - SJINI 🛛 💌	P8 - MJRD 📃	P9 - DUCT 💌	P10 - CUST 💌		Value
2	1		12	85	10	7	7	4	9		
3	2		12	150	10	7	7	4	1		Design of Experiment
4	3		12	109.43	13.723	4	1	4	1		GDO
5	4		12	85	25	4	1	4	4		
6	5		12	150	25	7	7	4	7	DX	
7	6		12.106	111.28	19.362	7	7	4	4		
8	7		12.213	136.17	19.787	7	7	4	4		
9	10		12.532	121.88	18.298	4	7	4	4		Custom
10	11		12.638	123.72	23.191	7	4	4	4		Central Composite Design
11	13		12.851	103.9	11.809	7	7	7	7		Optimal Space-Filling Design Box-Behnken Design
12	14	ГС	12.957	105.28	16.809	7	7	9	7		Custom
13		<u>E2</u>	IBMAD	107.13	22.34	4	1	4	1		Custom + Sampling Sparse Grid Initialization
14	16		13.17	129.72	12.128	7	9	4	4		
15	18		13.383	132.94	22.66	4	1	4	4		
16	19		13.489	92.376	14.574	4	7		Ontin	nall	atin Hypercube
17	20		13.596	93.759	20.213	4	4	<i>¥</i> 00L			ammypercube
18	22		13.809	115.89	14.894	4	4				·•
19	23		13.915	117.27	20.532	4	4				Vald enis
20	24		14.021	119.11	24.574	1	4				
21	25		14.128	139.4	15.213	4	150				
22	26		14.234	140.78	20.851	4	9			•	
23	27		14.34	99.291	10.851	4	9 140	•	• •		
24	28		14.447	100.67	15.638	1	130				
25	29		14.553	102.06	21.277	4	4			• •	
26	30		14.66	125.11	11.17	1	9 (m 120 -	••	• • • • •		
27	31		14.766	126.49	15.957	1	7 110	•			
28	32		14.872	127.87	21.596	1	7 100		•		
29	33		14.979	145.39	11.489	1	*	• • • • • • • • • • • • • • • • • • •		•	
30	34		15.085	146.31	16.277	1	9 80		· · · · · · · · · · · · · · · · · · ·		
31	35		15.191	147.7	21.915	1	7 3	•			
32	36		15.298	88.227	13.404	7	7	20			
33	37		15.404	89.61	19.043	7	7	-			22 24
34	38		15.511	90.993	23.723	7	7		15		10 20
•			n						10	12 14	TV IV
								tep (mm)			d (mm)

Explotación de modelos de simulación... Evaluación del DOE

File Options View Tools Help				1	US_V1 -	Workbench				
All Jobs 🔹 😹 🔁										
🖃 🍓 My Computer	Job	Status	Submitted	Owner	Prio	Server	Queue			
e-9 Queues	VIEW3/UpdateDesignPoints(1)	Running	05/08/2011 15:22:39	FPCMUR \imartinezf	Normal	RSM Arabi	arabi ansvs			
arabi_ansys	VIEW3/UpdateDesignPoints(2)	Running	05/08/2011 15:22:42	FPCMUR \imartinezf	Normal	RSM Arabi	arabi ansvs			
	VIEW3/UpdateDesignPoints(3)	Running	05/08/2011 15:22:45	FPCMUR \imartinezf	Normal	RSM Arabi	arabi_ansys			
	••• VIEW3/UpdateDesignPoints(4)	Running	05/08/2011 15:22:49	FPCMUR \imartinezf	Normal	RSM Arabi	arabi_ansys			IENITÍEICO MUDCIA
RSM Arabi	••• VIEW3/UpdateDesignPoints(6)	Running	05/08/2011 15:22:55	FPCMUR \imartinezf	Normal	RSM Arabi	arabi_ansys		FARQUE	
	VIEW3/UpdateDesignPoints(5)	Running	05/08/2011 15:22:52	FPCMUR \imartinezf	Normal	RSM Arabi	arabi_ansys			CENTRODESOFERCOMPOTACION
	VIEW3/UpdateDesignPoints(7)	Running	05/08/2011 15:22:58	FPCMUR \imartinezf	Normal	RSM Arabi	arabi_ansys			
	VIEW3/UpdateDesignPoints(8)	Running	05/08/2011 15:23:01	FPCMUR \imartinezf	Normal	RSM Arabi	arabi_ansys			
	VIEW3/UpdateDesignPoints(9)	Running	05/08/2011 15:23:05	FPCMUR \imartinezf	Normal	RSM Arabi	arabi_ansys			
	VIEW3/UpdateDesignPoints(11)	Queued	05/08/2011 15:23:11	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
ANOVO	VIEW3/UpdateDesignPoints(10)	Running	05/08/2011 15:23:08	FPCMUR \imartinezf	Normal	RSM Arabi	arabi_ansys			1.00
ANJIJ	VIEW3/UpdateDesignPoints(12)	Queued	05/08/2011 15:23:14	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
_	VIEW3/UpdateDesignPoints(13)	Queued	05/08/2011 15:23:17	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
Remote Solve	VIEW3/UpdateDesignPoints(14)	Queued	05/08/2011 15:23:21	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(15)	Queued	05/08/2011 15:23:25	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys		S Machanica	I Solver 10 task
Managar	VIEW3/UpdateDesignPoints(17)	Queued	05/08/2011 15:23:32	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys	AND	S Mechanica	I SUIVEI IU LASK
Manayer	VIEW3/UpdateDesignPoints(16)	Queued	05/08/2011 15:23:28	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			ook 10 tooko
_	VIEW3/UpdateDesignPoints(18)	Queued	05/08/2011 15:23:35	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys	F		ack IU lasks
	VIEW3/UpdateDesignPoints(19)	Queued	05/08/2011 15:23:38	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(20)	Queued	05/08/2011 15:23:41	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(22)	Queued	05/08/2011 15:23:48	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(21)	Queued	05/08/2011 15:23:45	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(23)	Queued	05/08/2011 15:23:51	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys		10X Snoo	dunl
	VIEW3/UpdateDesignPoints(24)	Queued	05/08/2011 15:23:54	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys		IUN Opee	uup
	VIEW3/UpdateDesignPoints(25)	Queued	05/08/2011 15:23:58	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(27)	Queued	05/08/2011 15:24:04	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(26)	Queued	05/08/2011 15:24:01	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(28)	Queued	05/08/2011 15:24:07	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(29)	Queued	05/08/2011 15:24:10	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys		-	
	VIEW3/UpdateDesignPoints(30)	Queued	05/08/2011 15:24:13	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys	8 3 dí	$as \longrightarrow$	20 horas
	VIEW3/UpdateDesignPoints(32)	Queued	05/08/2011 15:24:20	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(31)	Queued	05/08/2011 15:24:17	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			
	VIEW3/UpdateDesignPoints(33)	Queued	05/08/2011 15:24:23	FPCMUR \imartinezf	Normal	Not Assigned	arabi_ansys			-
							and the second	ES 📕 🔿 🖿	15:25	

Optimización Estructural

Supercomputador Ben Arabí

Explotación de modelos de simulación... ¿Qué es un Meta-modelo?

Aproximación global del modelo de simulación que permita evaluaciones con un bajo coste computacional.

Explotación de modelos de simulación... ¿Qué es un Meta-modelo?

Aproximación global del modelo de simulación que permita evaluaciones con un bajo coste computacional.

- Superficie de respuesta polinómica
- Redes neuronales
- Kriging
- Funciones de base radial
- Sparse grid

Explotación de modelos de simulación.... Modelos Kriging

Explotación de modelos de simulación... Meta-modelos $\tilde{M}_{j,Rd}(\mathbf{x})$ $\tilde{C}_{u}(\mathbf{x})$

1 evaluación ~ 5760seg

1 evaluación ~ 1 mseg

Grupo de Optimización Estructural

Laboratorio Virtual

Exploración del espacio de diseño mediante Meta-modelos

Exploración del espacio de diseño. Espacio de diseño

Exploración del espacio de diseño. Espacio de diseño

ANSYS

- ¿Qué ocurre en el resto del espacio de diseño?
- ¿Cuáles son las variables más influyentes?
- Es mi diseño robusto frente a incertidumbres en las variables y/o parámetros?
- ¿Es posible mejorar el diseño?

Sí con Meta-modelos

Exploración del espacio de diseño. Ductilidad

Exploración del espacio de diseño. Análisis de sensibilidad global

Exploración del espacio de diseño. Algunas conclusiones

- Del conjunto de variables de diseño estudiadas el espesor de la chapa de testa resulta la más influyente en el coste de la unión.
- El momento resistente de la unión se ve principalmente influenciado por el diámetro de los tornillos y en menor medida por el espesor de la chapa de testa.
- Para uniones de elevada resistencia (grandes diámetros de tornillos) un incremento del espesor de la chapa de testa genera una disminución de la ductilidad, pudiendo dar lugar a modos de fallo frágiles.
- La rigidez inicial de la unión es directamente proporcional al diámetro de tornillos y al espesor de la chapa, e inversamente proporcional a la separación de las dos filas superiores de tornillos.

Grupo de Optimización Estructural

Laboratorio Virtual

Optimización Multi-objetivo de uniones semirrígidas

Optimización Multi-objectivo de uniones semirrígidas

$$\begin{split} \min_{\mathbf{x}} \left\{ \tilde{c}_{u}(\mathbf{x}), -\tilde{M}_{j,Rd}(\mathbf{x}), -\tilde{S}_{j,ini}(\mathbf{x}) \right\} \\ \text{sujeto a} : \tilde{\theta}_{u}(\mathbf{x}) &\geq 0.035 \text{ rad} \\ d_{b} &= \left\{ 10, 12, 16, 20, 24, 27 \right\} \text{mm} \\ t_{ep} &= \left\{ 10, 12, 14, 15, 16, 18, 20, 25 \right\} \text{mm} \\ 85 \text{ mm} &\leq p_{\chi} \leq 150 \text{ mm} \end{split}$$

	A	В					
1	Property	Value					
2	Design Points						
3	Preserve Design Points After DX Run						
4	 Optimization 						
5	Optimization Method	Screening 🗾					
6	Number of Samples	10000					
7	Constraint Handling (GDO)	As Hard Constraints 🗾					
8	Size of Generated Sample Set	10000					
9	Verify Candidate Points						

	А	В	с	D	E	F	G	н	
1		P2 - DB_V	P4 - PX_V	P6 - TEP_V	6 - TEP_V P7 - SJINI		P9 - DUCT	P10 - CUST	
2	Optimization Stud	У							
3	Objective	No Objective 💽	No Objective 💽	No Objective 💽	Maximize 🗾	Maximize 💽	Values >= Target 💽	Minimize 🗾	
4	Target Value	10 85		10 💌			0.035		
5	Importance	Default 🗾 💌	Default 📃 💽	Default 📃 💽	Default 📃 🗾	Default 📃 💌	Default 💽	Default 🗾	
6	Candidate Points								
7	Candidate A	- 27	- 95.703	- 12	** 76973	- 291.3	- 0.035292	🗙 43.239	
8	Candidate B	- 27	- 101.61	- 12	★★ 73983	- 279.29	- 0.037503	★ 43.38	
9	Candidate C	- 27	- 113.73	- 16	** 75280	* 362.41	- 0.035026	- 51.531	

Optimización Multi-objectivo de uniones semirrígidas. Meta-modelos

Optimización Estructural

Optimización Multi-objectivo de uniones semirrígidas

Optimización Multi-objectivo de uniones semirrígidas

		Diseño I				Diseño	П	Diseño III		
	_	d _b	t _{ep}	р _х	d _b	t _{ep}	₽ _x	d _b	t _{ep}	p _x
		20	10	149.773	27	12	95.703	27	20	124.045
$\tilde{M}_{j,Rd}(\mathbf{x})$	(kNm)	126.841				291.298	;	428.362		
$\tilde{C}_{u}(\mathbf{X})$	(uc)		33.290			43.239		59.804		
${ ilde S}_{j,ini}({f x})$	(kNm/rad)	33288.774				76973.30	14	76720.723		
$ ilde{ heta}_u(\mathbf{x})$	(rad)		0.039			0.035		0.035		

Dimensiones en mm.

Optimización Estructural

Optimización Multi-objectivo de uniones semirrígidas

 $\tilde{S}_{j,ini}(\mathbf{X})$

 $\tilde{M}_{j,Rd}(\mathbf{X})$

 $\tilde{\theta}_{\mu}(\mathbf{X})$

 $\tilde{C}_{u}(\mathbf{X})$

Optimización Multi-objectivo de uniones semirrígidas. Errores de la aproximación

	I	Diseño I		-	Diseño II		Diseño III			
	Kriging	MEF	Dif. (%)	Kriging	MEF	Dif. (%)	Kriging	MEF	Dif. (%)	
$\tilde{M}_{j,Rd}(\mathbf{x},\mathbf{z})$	126.841	128.139	-1.013	291.298	294.839	-1.201	428.362	438.540	-2.322	
$\tilde{C}_{u}(\mathbf{X})$	33.290	33.352	-0.187	43.239	43.284	-0.103	59.804	59.779	0.042	
$\tilde{S}_{j,ini}(\mathbf{x},\mathbf{z})$	33288.774	34514.737	-3.552	76973.304	79533.487	-3.219	76720.723	74818.099	2.543	
$\tilde{\theta}_{u}(\mathbf{x},\mathbf{z})$	0.039	0.037	5.101	0.035	0.033	5.271	0.035	0.033	5.004	

Optimización Multi-objectivo de uniones semirrígidas

CPUtime = ngen x npop x time_mef = 100*50*2 horas =10000 horas= 1.14 años

- *ngen*= número de generaciones (MOGA)
- *npop*= tamaño inicial de la población (MOGA)
- *time_mef* = coste computacional del modelo de elementos finitos

CPUtime= *ndoe* x *time_mef* + *nge* x *npop* x *time_kg* =100*2 + 100*50*2.7e-7 =200 horas= **8.3 días**

- ndoe = tamaño del DOE
- *time_kg* = coste computacional de una evaluación del modelo Kriging

CPUtime= (*ndoe* x *time_mef*)/speedup + *nge* x *npop* x *time_kg* =(100*2)/10 + 100*50*2.7e-7 =**20 h**

Metamodelos reutilizables

Grupo de Optimización Estructural

Conclusiones

Conclusiones

- El entorno ANSYS Workbench puede utilizarse como un laboratorio virtual, que proporciona al diseñador unas herramientas eficientes, que posibilitan un mejor conocimiento del problema y la obtención de mejores diseños.
- La utilización de **Meta-modelos** se ha mostrado como una solución eficaz para reducir el coste computacional de procesos de diseño con modelos de elementos finitos complejos. De esta forma, resuelven necesidades de la industria tales como **la optimización global, multidisciplinar o probabilista.**
- Para la aplicación desarrollada, la utilización de Meta-modelos proporciona mayor información acerca del comportamiento de la unión y de los modos de fallo involucrados en la misma.
- La combinación de Meta-modelos con cálculo distribuido (Centro de Supercomputación Ben Arabí) permite disminuir en mayor medida el coste computacional, aumentando la productividad y competitividad en el proceso de diseño.

Gracias por su atención

Agradecimientos

Proyecto DPI 2011-26394