

Universidad Politécnica de Cartagena

REACTIVE CONDUCTING POLYMERS AS ACTUATING SENSORS AND TACTILE MUSCLES

Toribio Fernández Otero

Centro de Electroquimica y Materiales Inteligentes (CEMI) <u>www.upct.es/electroquimica/laboratorio</u>

Full Range of Sizes

Sixty Orders of Magnitude Life in Middle Region

Good physical models for very small or very large systems. Bad description of the intermediate systems: complexes molecular interactions and shifts on those interactions (life)

Conducting Polymers

2000 Nobel Award in Chemistry

1977 JCS Chem. Comm. 578-580

"for the discovery and development of conductive polymers"

Hideki Shirakawa Alan GMacDiarmid Alan J Heeger

Compacted

THE OXIDATION induces :

- Breaking of double bonds
- Conjugation
- New double bonds.
- Conformational changes
- Soft and back field ionic implantation

REVERSE ELECTROCHEMICAL OXIDATION/REDUCTION (SWELLIN/SHRINKING) OF A CONDUCTING POLYMER FILM

ELECTRO-CHEMO-MECHANICAL DEVICES: SHIFTING ACTUATING MOLECULAR INTERACTIONS DURING THE REACTION.

THE DRIVING ELECTROCHEMICAL REACTION PROMOTES A CHANGE OF THE <u>INTERMOLECULAR INTERACTIONS</u> INSIDE THE FILM: -POLYMER-POLYMER -POLYMER-COUNTERION -POLYMER-SOLVENT -SOLVENT-IONS

THE OXIDATION OF A CHAIN OCCURS THROUGH CONSECUTIVE STEPS

 $CP, (CP^+)A^-, (CP^{2+})A^-_2, (CP^{3+})A^-_3, (CP^{4+})A^-_4, (CP^{5+})A^-_5, (CP^{6+})A^-_7, ..., (CP^{n+})A^-_n$

EVERY STEP IS A CHEMICAL EQUILIBRIUM

 $[(pPy^{n+})_{s}(CI^{-})_{n} (H_{2}O)_{m}]_{gel} + (CI^{-})_{aq} + aH_{2}O \leftrightarrow [(pPy^{(n+1)+})_{s}(CI^{-})_{n+1} (H_{2}O)_{m+a}]_{gel} + (e^{-})_{metal}$

DEFINING AN ELECTRODIC POTENTIAL

 $E = k_1/k_{-1} = E_0 - RT/F \ln [(pPy^{(n+1)+})_s(CI^-)_{n+1} (H_2O)_{m+a}] / [(pPy^{n+})_s(CI^-)_n (H_2O)_m] [CI^-]$

STRUCTURE FOR AN IDEAL, MIMETIC (ARTIFICIAL) AND NANOMETRIC SARCOMERE

Artificial Muscle for a conscious system BIOMIMETICS, 07

TOUCHING, PUSHING, AND SENSING MUSCLE

COMPLEXES STRUCTURES KEEP SIMULTANEOUS ACTUATING-SENSING RPOPERTIES: ROMBIC DEVICE BY COMBINATION OF BILAYERS

INCLUDING: WE, RE and CE

J. Bioelectrochem. Bioenerg., 38, 411-414 (1995) J. Bioelectrochem. Bioenerg., 42, 117 - 122 (1997)

J. Appl. Electrochem., 36, 205–214 (2006)

LARGE (40%) LONGITUDINAL MOVEMENT PATENT:P200300800

40% ΔΙ

Electrochim. Acta (2007)

Monodimensional combination of devices

(In progress)

For strong mechanical developments

BIOMIMETICS, 07

For large displacements

MUSCLE ELEMENT IN THREE DIMENSIONS

(In progress)

Able to save internal electrical interruptions

Skeletal Muscle Fibre Contraction Cycle

MOLECULAR MOTOR: IDEAL, LINEAL CHAIN OF A CP GRAFTED TO AN ELECTRODE

METAL SOLUTION

CONFORMATIONAL MOVEMENTS ORIGIN OF ACTUATING AND SENSING PROPERTIES

> PROBLEM: CHARACTERIZATION???

SOLUTION: THE CONFORMATIONAL ENERGY !!!

QUESTION: IS THIS ENERGY AN ACTIVATION ENERGY ?? OF THE STIMULATING ELECTROCHEMICAL REACTION

Kinetic Control

ELECTROCHEMICAL REACTIONS OF POLYTHIOPHENE IN PRESENCE OF THE SOLVENT **S** CONTAINING THE ANION **A**

$\begin{array}{ll} (pTh)_{s}+n(A^{\text{-}})_{solv}+m(S)\leftrightarrow \left[(pTh^{n+})(A^{\text{-}})_{n}\left(S\right)_{m}\right]_{gel}+(n\ e^{\text{-}})_{metal}\\ neutral\ chains & oxidized\ chains \end{array}$

OXIDATION EMPRICAL KINETIKS

R = A exp($-E_{\alpha}/RT$) [ClO₄⁻]^{α} [pTh⁺]^{β}

Log R = dQ / dt = i

 $Log i = \log[A \exp(-E_{\alpha}/RT)] + \alpha \log [C10_4^{-}] + \beta \log [pTh^{n+}]$

This equation states the experimental procedure required to obtain: k, $E_{a_n} \alpha$ and β .

Double logarithmic plot: oxidation rates of a polythiophene-coated platinum electrode versus **[pTh+]**. The film was submitted to potential steps between different cathodic potentials (**kept for 30 s every time**) and different (700, 750, 800, 850, 900 and 950 mV) anodic potentials.

The **[pTh+]** in the polymer film is obtained from the overall oxidation charge consumed at the end of the potential step, the polymer weight **0.23 mg** and the polymer density.

E _{cat} (mV)	700	400	250	0	-250	-500	-750	-1000
R ₀ /mA cm ⁻²	1.098	0.87	0.78	0.72	0.695	0.668	0.571	0.15
β	1	1.24	1.2	1.4	1.4	1.6	1.71	1.85
k/mol l ⁻¹ s ⁻¹	39.6	23.4	19.1	16.6	15.7	14.7	11.8	5.4

Slopes from the figure are the reaction orders β . By extrapolation of the lineal variations to **[pTh+]=0**, the limit oxidation rates **R0 (mA cm-2)** were obtained. Values of the rate coefficients, **k**, were calculated).

LITERATURE

Intelligent Materials. Ed. by Mohsen Shahinpoor, Hans-Joerg Schneider. RSC. 2007

Handbook of Conducting Polymers (3rd Edition). Ed by T. Stotheim, R. Elsenhaumer and J. Reynolds. Marcel Dekker Inc. 2007

Biomimicking Materials with Smart Polymers. Ed by M. Elices, R.W. Cahn. Pergamon Materials Series.(Amsterdan) 2000.

Polymer sensors and actuators. Ed by D. de Rossi and Y. Osada. Springer-Verlag 1999

Modern Aspects of Electrochemistry, vol 33 Ed by J. O'm. Bockris, R.E. White, B.E. Conway, Ed. Plenum Press 1999

Handbook of Organic Conductive Molecules and Polymers, vol 4. Ed by Hari Singh Nalwa. John Wiley & Sons. 1997

J. Phys. Chem. B. 107 13954 (2003)., 108, 15429 (2004), 109. 1723 (2005) 109. 907 (2005)., 109, 21078 (2005) Chem. Commun, 284 (2004). J Electroanal. Chem. 561, 16 (2004)

COLLABORATIONS:

<u>M. Teresa Cortés</u>. Los Andes Univ. (Colombia) <u>Iker Boyano</u> Centro Tecn. CIDETEC <u>Manuel Marquez.</u> INEST group, PMUSA. Los Alamos Nat. Lab./ <u>Greg Zotzing.</u> Univ. Connecticut. <u>Elisabeth Smela.</u> Univ of Maryland <u>M. Jesús Ariza.</u> Univ. de Almería

COMPANIES: Phillips Morris, Temena.

Financial support: MEC, Fundación SENECA, PMUSA, EU.

Dedicated to the memory of Prof. A. MacDiarmid,

how had accepted our invitation as a plenary lecturer

and his nomination as Honorary Doctor of the Polytechnic Univ. of Cartagena.

Universidad Politécnica de Cartagena Center for Electrochemistry and Intelligent Materials (CEIM) *(CEMI)*

www.upct.es/electroquimica/laboratorio

THANKS FOR YOUR KIND ATTENTION!

