

Development of biomimetic nanoporous membranes for the sensing and separation of proteins

Chee-Seng Toh

Assistant Professor Department of Chemistry Faculty of Science National University of Singapore

Membranes in nature – Sensing and separation

- Biomimetic approach to sensing and separation
- Conclusion

Membranes in nature

Sensing

- Recognition protein
 Receptor protein
- Transport across membrane
 - Diffusion
 - Facilitated transport
 - Active transport
 - Osmosis

Materials-focused strategy

Classical Materials

- Plastics
- Metals
- Semiconductor
- □ Ceramics
- Composites

Advanced Materials

- □ Hybrids
- Nanomaterials
- Soft biomolecular materials

He L. and Toh C.S. "Recent Advances in Analytical Chemistry – A Material Approach", Anal. Chim. Acta 556 1–15 (2006).

Materials-focused strategy

•Properties

- High mechanical strength

- High thermal and chemical stability
- Regular nano-sized porous structure (10 to 500 nm)
- Pore densities of about 10¹⁰ to 10¹¹ pores per cm²

Electrochemical Anodization

$$2AI + 3H_2O \rightarrow AI_2O_3 + 3H_2$$

Our biomimetic approach

Fabrication of Electrode: Schematic & Approaches

Left: Schematic of fabrication of electrode using *surface contact pipette* anodization method

Top: Schematic of *conventional sub-surface* anodization method

G.W. Koh, S. Agarwal, P.S. Cheow and C.S. Toh, "Characterization of the barrier layer of nanoporous alumina films prepared using two different contact configurations", Electrochimica Acta, 52(8), 2815-2821 (2007).

Our biomimetic approach

Alumina barrier layer

 Non-porous alumina layer between porous alumina and underlying conductive electrode

Removal of barrier layer

- Chemical etching method
- Progressive step-down of the anodization voltage after formation of porous alumina layer (Furneaux et. al. Nature 337,147, 1989)
- Re-anodization of alumina under constant current conditions

(Jagminas et. al. Appl. Surf. Sci. 405, 252,2006)

Our biomimetic approach

G.W. Koh, S. Agarwal, P.S. Cheow and C.S. Toh, "Development of a membrane-based electrochemical immunosensor", Electrochimica Acta 53 (2), 803-810 (2007).

$$\left(\delta i\right)_{\max} = \frac{nFAD^{1/2}C_{\text{bulk}}}{\pi^{1/2}(\tau - \tau')^{1/2}} \left[\frac{(1 - \sigma)}{(1 + \sigma)}\right]$$

 $(\delta i)_{max}$ is the maximum peak height or DPV signal response $(\tau - \tau') =$ pulse duration $\Delta E =$ pulse amplitude $\sigma = \exp(-nF\Delta E/2RT)$ for the oxidation

process.

Analytical Separation of proteins

Diffusion

of Singapore

Diffusion and migration

Separation of proteins

S

National University of Singapore

Single Protein – Bovine Serum Albumin (BSA)

of Singapore

0 V

 δC J = -Dбх

Diffusion

potentials

of Singapore

Analytical Separation of proteins

Separation of proteins

IS

National University of Singapore

Applied potential of +2V

P.S. Cheow, E. Ting, M.Q. Tan and C.S. Toh, "Separation of proteins using nanoporous alumina membrane", submitted. P.S. Cheow and C.S. Toh, "Electromembrane for analytical separation of proteins", invention disclosure.

- Development of a protein sensor based on selective binding of protein to 'receptor' lined along walls of nanochannels. Signaling is induced based on extent of blockage of channels.
- Protein separation using facilitated transport strategy. Proteins are selected based on charge-tosize ratio.
- On-going work to reduce size of channels so to 'fit' the size of smaller molecules.

- Guiwan Koh (graduate student)
- Shuchi Agarwal (former research assistant)
- Pui-Sze Cheow (graduate student)
- Eugene Ting (honours student)
- Mei-Qi Tan (honours student)
- Janice Ong (honours student)
- Thanh Binh Nguyen (graduate student)
- MOE (FRC) grant, the NUS Nanoscience and Nanotechnology Initiatives (NUSNNI), NUS scholarships for graduate students