Novel gas sensors based on carbon nanotube films

I. Sayago^a, M. Aleixandre^a, M.C. Horrillo^a, M.J. Fernández^a, E. Terrado^b, E. Lafuente^b, E. Muñoz^b, W.K. Maser^b, A.M.Benito^b, M.T.Martinez^b and J. Gutiérrez^a

^aLaboratorio de Sensores IFA-CSIC, Serrano 144, 28006 Madrid, Spain. e-mail:sayago@ifa.cetef.csic.es

^bInstituto de Carboquímica CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain

Abstract

Novel resistive gas sensors based on single-walled carbon nanotubes (SWNTs) as the active sensing element have been researched for gas detection (H_2 and NO_2). SWNTs were produced by arcdischarge and deposited on alumina substrates by airbrush. Two different SWNTs materials were used as sensitive layers: Pd-functionalized SWNTs and SWNTs. The response to NO_2 and H_2 and the crosssensitivity to gases such as ammonia, toluene and octane were studied.

Sensors were characterized by dc electrical measurements in air atmosphere at different temperatures. Detections were carried out with a constant flow of 200 ml/min and exposure times of 15 min. Gas concentrations were modified from 0.1 to 2 % for H₂ and 0.1 to 0.9 ppm for NO₂. Concentrations of interfering gases were 100, 400, and 300 ppm for ammonia, toluene and octane, respectively.

The best responses were obtained for SWNTs sensors to NO_2 and for Pd-functionalized SWNTs sensors to H_2 . Moreover, these sensors provided no response to interfering gases such as H_2 , NH_3 , toluene and octane.

Response curves of the sensors.