An application to spatial statistics to basketball analysis; The case of Los Angeles Lakers from 2007 to 2009.

Authors (in alphabetical order)
Fernando A. López ${ }^{\text {a }}$ (corresponding author)
Jose A. Martínez ${ }^{\text {b }}$
Manuel Ruiz ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Quantitative Methods and Computing. Technical University of Cartagena
${ }^{\mathrm{b}}$ Department of Management and Marketing. Technical University of Cartagena

Abstract

The importance of quantitative analysis in sports using objective data such as game statistics is prominent in the last years. In this paper we have shown an application of spatial statistics to better understand the game of basketball. This methodology has been underutilized in sports research, and specifically in basketball. We have depicted how a spatial clustering technique, such as Kulldroff test, which is widely used in epidemiology, can be applied to analyse basketball data. This test detects low and high incidence clusters of shoots, and therefore better characterizes the game of teams and individual players. In addition, we have also used a test based on entropy, the V-test, which serves to statistically compare shooting maps. We show the interesting contribution of this methodological perspective in the case of the analysis of Lakers performance, and the transformation of this team from a medium-level NBA franchise into a champion team because of, among other factors, the incorporation of two key players in the 2007-08 season: Pau Gasol and Derek Fisher.

Key words: Basketball, Cluster of shoots, LAL

An application to spatial statistics to basketball analysis; The case of Los Angeles LAL from 2007 to 2009.

1. Introduction

The importance of quantitative analysis in sports using objective data such as game statistics is prominent in the last years. In fact, academic and professional attention to sports analytics has exponentially grown since the appearance of the "Moneyball" phenomenon (Lewis, 2003). In the specific field of basketball, the significance of this topic is outstanding, and has been a matter of subject of articles in academic journals (e.g. Berri, 1999; Berri \& Bradbury, 2010; Cooper, Ruiz \& Sirvent, 2009; Esteller-Moré \& EresGarcía, 2002; Kubatko, Oliver, Pelton \& Rosenbaum, 2007; Piette, Annand \& Zang 2010), seminal books (e.g. Berri, Schmidt \& Brook, 2006; Oliver, 2004; Winston, 2009), prospective books (e.g. Doolittle \& Pelton, 2009; Hollinger, 2005), and a plethora of specialized websites (e.g. www.apbrmetrics.com, www.hoopsstats.com, www.nbastuffer.com, www.basketball-reference.com, www.82games.com, www.basketballvalue.com).

There are three main stream of research on using quantitative analysis in basketball to better understand the game through statistics: The first one is related to the valuation of teams and players performance, in order to get a more objective view about productivity, efficacy, efficiency and value of the actors of the game. Some of the most outstanding research about this topic are: Berri (1999; 2008), Berri \& Eschker (2005), Fernández, Camerino, Anguera \& Jonsson (2009), Hoon-Lee \& Berri (2008), Esteller-Moré \& Eres-García (2002), Mavridis, Tsamourtzis, Karipidis \& Laios (2009), Rimler, Song \& Yi (2010), Piette, Annand \& Zang (2010). The second one is concerned to obtain accurate predictions, in order to minimize risk of decision making units (managers, coaches, etc.). Some of the more relevant studies on this topic are the following: Alferink, Critchfield, Hitt \& Higgins (2009), Berri, Brook \& Schmidt (2007), Berri \& Schmidt (2002), Berry, Reese \& Larkey (1999), Hitt, Alferink, Critchfield \& Wagman (2007), Romanowich, Bourret \& Vollmer (2007), Sánchez, Castellanos \& Dopico (2007), Skinner (2010), Tauer, Guenther \& Rozek, (2009), Trininic, Dizdar \& Luksic (2002), Vollmer \& Bourret (2000). Finally, a third stream of research has treated on the analysis of controversial themes such as competition imbalance, manipulation of games, salary determination, race discrimination, and other miscellaneous topics, such as momentum of teams or player's hot-hand. A sample of these studies are: Arkes, (2010), Berri, Brook, Frick, Fenn \& Vicente-Mayoral (2005), Balsdon, Fong \& Thayer (2007), Fort, Hoon-Lee \& Berri (2008), Fort \& Maxcy (2003), Humphreys (2000; 2002), Michaelides (2010), Price \&Wolfers (2010), Vergin (2000), Zimmer \& Kuethe (2007).

However, few studies have analysed basketball games from a spatial perspective, beyond stats appearing in box-scores. The progressive inclusion of shot-location coordinates in play-by-play data in the most important basketball competitions around the world (see Martínez, 2010) facilitates data analysis using spatial statistics. Nevertheless, as far as we know, few studies as Hickson \& Waller (2003) and Reich, Hodges, Carlin \& Reich (2006) have used this perspective. Both studies only analysed performance of a single player (Michael Jordan and Sam Cassell, respectively). As Piette, Annand \& Zhang (2010) explain,
the first study models each shot chart as an instance of some Poisson process and estimated the corresponding nonparametric functions relating to each event. The second research applies a Bayesian multivariate logit model to spatial data along with an added set of covariates. To determine the model parameters, sampling is done via a Monte Carlo Markov Chain method. The results from these two studies are helpful examples of the capabilities of this type of approach.

Although spatial statistics are progressively being incorporated to analyse sports data (e.g. Mulrooney, 2007), and there is a continuous improvement in generating shot location data in basketball (Chen, Tien, Chen, Tsai \& Lee, 2009), it is necessary to count with a powerful tool to understand spatial patterns of shooting in order to help coaches and analysts to evaluate the game and to make low-risky decisions. In addition, this may complement other research about space-time coordination dynamics of basketball teams (Bourbousson, Sève \& McGarry, 2010), or shooting abilities (Piette, Annand \& Zhang, 2010). Consequently, the procedure we introduce in this study is a novel approach to enrich information obtained from play-by-play data of basketball games or video tracking of players.

In this research, we use a different approach in order to analyse spatial data from shot location. Therefore, the new contributions of our research are the following: Firstly, we apply our analysis to the shots attempted of whole teams and specific players. Specifically, we centre our analysis to the NBA team Los Angeles Lakers (LAL). As a result, we are able to detect differences in shot location patterns from LAL to the whole league and from specific LAL's players to their own team. Secondly, we use Kulldroff test (Kulldorff, 1997) to analyse spatial data, in order to detect low and high incidence clusters of shot locations, which is a novel approach in sports sciences. This tool allows to find significant different shooting patterns, and to visually show these areas in order to intuitively compare performance of disparate teams and players. Obviously, the statistical approach of this clustering process provides much more information regarding shooting performance than a mere descriptive analysis of shot location (such as, for example, analysis made in specialized sites such as www.82games.com/shotzones.htm or http://hoopdata.com/shotstats.aspx). As we show in our empirical application, the utility of spatial analysis can help to analyse the transformation of LAL from a middle NBA team (2006-07 season) into a NBA champion team (2008-09 season), because of (among other factors) the incorporation of two key players in the 2007-08 season: Pau Gasol and Derek Fisher.

Therefore, in this research we provide answers to questions such as: Does the LAL team have a different spatial pattern of shooting than the rest of the NBA teams? Or similarly, does player P have a different spatial shooting pattern than the rest of his team? In addition, when analyzing the spatial pattern of shots attempted by a player P , an interesting question is: Does exist a high frequency (low frequency respectively) spatial shooting cluster of LAL (resp. player P) different from the one expected by chance with underlying population all NBA shots (resp. team shots)? Notice that by obtaining the high and low frequency shooting clusters one is also able to find out whether the incorporation of a player P has changed the spatial shooting pattern of his team (or other players within the team) by comparing the cluster between the season in which player P has been incorporated to the team and the previous season.

2. The LAL transformation

In the season 2006/07 LAL was a team living a transition period after 5 years of success (four NBA finals and three championships from 2000 to 2004), and then 2 years of failures (2004/05 and 2005/06). In these 2 unsuccessfully seasons, LAL did not classified for play-offs in the former, and was eliminated in the first round in the latter. Therefore, LAL began $2006 / 07$ seasons with several doubts regarding team performance. Note that LAL are one of the most glamorous franchises in the NBA history, and always have to perform with high rates of demand. Therefore, these poor results were not consistent with LAL expectancy. In such season, the first season of our analysis, LAL performed a little poorly than the prior season (0.51 of Win-Loss record against 0.54), and also was eliminated in the first-round of the play-offs.

Next season (2007/08) LAL made important changes in its roster. They signed guard Derek Fisher in July 20, 2007; forward Tevor Ariza in November 20, 2007; and power-forward Pau Gasol in February 1, 2008. These were the most important player movements in that season, because other signed players had a marginal presence in the roster (see all these player movements and stats in www.basketballreference.com). In contrast, one of the most important players in the prior season, Smush Parker, signed in July, 2007 as a free agent with Miami Heat, and other important player as Maurice Evans was traded in order to sign Trevor Ariza.

Finally, in the following season (2008/09), there were no relevant changes in the roster, because the few player movements had very little incidence in the distributions of minutes per game of the remaining players. In these three seasons, Kobe Bryant and Lamar Odom were always at the top three of the team in minutes played, so they can be considered as reference factor in team performance for the period of time we analyzed. Obviously, it is pertinent to remember that Kobe Bryant is one of the most important players of the League, and one of the best players in the history of NBA.

Lakers got a 0.51 Win-Loss record in the 2006/07 season, a 0.69 in the 2007/08 and a 0.79 in the 2008/2009. In these two later seasons, LAL played the NBA finals, winning the latter. The transformation of team performance is evident, being the 2007/08 season the tipping point of change. Specialized analysts agree that the incorporation of Fisher and Gasol was crucial for such transformation (e.g. Bresnahan, 2010; Kleeman, 2009; Manning, 2009; Sanderson, 2010). Note that Trevor Ariza only played 24 games in that season because of an injury. Before signing Gasol, LAL got a 0.65 Win-Loss record in the first 46 games of the season. After signing Gasol, and considering only the 27 games were Gasol played (he missed the remaining 9 games of the season because of an injury), LAL got a 0.84 Win-Loss record.

In this research we analyse if this obvious change of LAL performance is reflected in disparate patterns of shot locations, if the arrival of Gasol and Fisher spatially changed the LAL game, and whether players such Kobe Bryant or Lamar Odom changed their shooting model.

Normal box-score stats partially reflect such transformation (Table 1). LAL improved offensive and defensive performance, but the percentages of field goals and free throws were very alike in the three seasons (with a slight trend to improve). Therefore, changes of LAL offensive-defensive differential were mainly caused by the increment of plays. As LAL increased rebounds, steals and decreased turnovers, they could shot with more assiduity, and then they improved points per game. Note that, in the second season, field goals attempted increased by 2.89 per game, and in the third season by 1.98. Consequently, offensive play changed in a more relevant form than defensive game.
*** Table 1 near hear ***

Table 1. Box-score stats of LAL and Opponents in the three regular seasons.

		FGA	FG\%	3PA	3P\%	FTA	FT\%	TRB	AST	STL	BLK	TOV	PTS	PTS/G	W-
L\%															

FGA: Field Goal Attempted; FG\%: Field Goal Percentage; 3PA: Three Points Attempted; 3P\%: Three Points Percentage; FTA: Free Throw Attempted; FT\%: Free Throw Percentage; TRB: Total Rebounds; AST: Assists; STL: Steals; BLK: Blocks; TOV: Turnovers; PTS: Points; PTS/G: Pointes Per Game; W-L\%:Win-Loss Percentage.

* LAL played 250 extra-minutes in such season compared with the following two seasons, due to overtimes. Therefore, we have normalized data of that season in order to make numbers comparable.
Source: www.basketball-reference.com

Although these stats are very useful to understand the change of LAL performance, we will show how spatial analysis can be a powerful tool to complete information provided by basic stats, offering new insights about how LAL changed their offensive and defensive game, throw change in shooting locations.

3. Method

Data

We downloaded the data base of play-by-play statistics including shot location from www.basketballgeek.com. This is the unique free source of this type of data, because other play-by-play sources do not include shot location coordinates, and sources of shot charts are not coded in readable data base format. Data of three whole regular seasons (from 2006/07 to 2008/09) were downloaded. As these data are not official stats, there are some missing games. Therefore, a total of 3509 from the 3690 games played were available. This represents less than 5% of missing games, what we consider an admissible number for not disturbing results. Data were read and filtered using the MATLAB 2010b package. As all games were coded in the play-by-play format, a validation process were achieved in order to ascertain that shot attempted codified by www.basketballgeek.com and the official stats matched. More than 99% of concordance was found among the downloaded data base and official stats of LAL and about 95% of the whole NBA. Therefore, we consider the data base as reliable. Regarding the coordinates (x, y) of shot location, the interpretation is as follows: If you are standing behind the offensive team's hoop then the X axis runs from left to right and the Y axis runs from bottom to top.

We consider the basketball court as a regular 51×94 lattice. Therefore, each cell has an approximated size of $30 \times 30 \mathrm{~cm}^{2}$. We will concentrate the analysis in the shots done from a bit before the mid court and excluding the farthest shots and those in the three lines behind the basket. Thus our lattice will have a total of $\mathrm{R}=51 \times 33=1683$ locations. We only consider the nearest 33 files to the rim, once excluded the two first files where there is a negligible number of shots.

Kulldroff test

To detect spatial non-random clusters we will use Kulldorff test. The procedure of this test is to impose a window on the map and move the window centre over each point location so that the window includes different sets of neighbouring points at different positions. By adjusting the centre location and radius, the method generates a large number of distinct windows, each including a different set of neighbouring points. At each point location, the size of the window is increased continuously from ' 0 ' to a user-defined maximum size. The maximum-size parameter sets an upper bound on the window's radius in one of two ways: (1) by specifying the maximum percentage of the total population within the window or (2) by specifying the geographic extent of the circle. Option (1) is used in the research reported here. Due to the court shape we have used elliptic Windows with a maximum size of a 5% of the total shots attempted.

The null hypothesis tested by Kulldorff test is that in all locations the probability of a shot attempt is the same while the alternative hypothesis is that there exists a window W such that the probability of a shot attempt inside W is different from the one outside W . Now we will introduce some notation which is needed to follow the mathematical description of the test.

Let n be the total number of shots attempted by player P . Let n_{s} and n_{W} the total number of shots attempted by player P at location s and in window W respectively. Let $\mathrm{N}_{\mathrm{s}}, \mathrm{N}_{\mathrm{W}}$ and N be the total number of the team shots attempted at location s , window W and in the whole basketball court respectively. Notice that the variable X_{s} counting the number of shots attempted by player P at location s distribute as a Binomial distribution $\mathrm{B}\left(\mathrm{N}_{\mathrm{s}}, \mathrm{p}_{\mathrm{s}}\right)$ where p_{s} is the shooting probability of player P at location s . Then the null hypothesis and the alternative hypothesis can be stated as
$\mathrm{H}_{0}: p_{s}=p$ for all $\mathrm{s} \in \mathfrak{L}$
H_{1} : There exists a window W such that $p_{s}=p_{W}$ for all $\mathrm{s} \in \mathrm{W}$ and $p_{s}=q_{W}$ for all $s \notin W$ with
$p_{W} \neq q_{W}$
respectively.
Therefore under the null hypothesis H_{0} the joint distribution of the R variables $\left(X_{1}, X_{2}, \ldots, X_{R}\right)$ is a multinomial distribution with likelihood function $\frac{N!}{n_{1}!\cdots n_{R}!}\left(\frac{n}{N}\right)^{n}$ while under H_{1} the likelihood function remains as $\frac{N!}{n_{1}!\cdots n_{R}!}\left(\frac{n_{W}}{N_{W}}\right)^{n_{W}}\left(\frac{n-n_{W}}{N-N_{W}}\right)^{n-n_{W}}$. Then the likelihood ratio statistic in the window W is:
$\lambda_{\mathrm{w}}=\left(\frac{\mathrm{n}_{\mathrm{w}}}{\mathrm{E}_{\mathrm{w}}}\right)^{\mathrm{n}_{\mathrm{w}}}\left(\frac{\mathrm{n}-\mathrm{n}_{\mathrm{w}}}{\mathrm{n}-\mathrm{E}_{\mathrm{w}}}\right)^{\mathrm{n}-\mathrm{n}_{\mathrm{w}}}$ where $E_{W}=\frac{N_{W} n}{N}$ is the expected value under H_{0} of shots attempted in window W .

Then Kulldorff statistic for high and low frequency shots attempt is define as the maximum of the values λ_{W} with W running all possible windows in the lattice \mathfrak{L}, that is,

$$
\begin{aligned}
& K u_{\text {high }}=\sup _{W}\left\{\left(\frac{n_{W}}{E_{W}}\right)^{n_{W}}\left(\frac{n-n_{W}}{n-E_{W}}\right)^{n-n_{W}} I\left(\frac{n_{W}}{E_{W}}>\frac{n-n_{W}}{n-E_{W}}\right)\right\} \\
& K u_{\text {low }}=\sup _{W}\left\{\left(\frac{n_{W}}{E_{W}}\right)^{n_{W}}\left(\frac{n-n_{W}}{n-E_{W}}\right)^{n-n_{W}} I\left(\frac{n_{W}}{E_{W}}<\frac{n-n_{W}}{n-E_{W}}\right)\right\}
\end{aligned}
$$

where $\mathrm{I}(\mathrm{x})$ is the indicator function taking the value 1 if the logic function x is true and 0 otherwise. To evaluate the statistical significance of the primary cluster, a large number of random replications of the data set are generated under the null hypothesis. The p-value is obtained through Monte Carlo hypothesis testing (Dwass 1957), by comparing the rank of the maximum likelihood from the real data set with the maximum likelihoods from the random data sets. If this rank is r, then the p-value $=r /(1+\#$ simulations $)$. By repeating this procedure and eliminating the selected window we can detect secondary clusters. There is available a free software to run Kulldroff test, SatScan, that can be downloaded from www.satscan.org.

In a similar way, using a likelihood ratio test one can design a nonparametric test to detect global differences in the frequency of the spatial shooting pattern. This test statistic is based on entropy measures and test for the null hypothesis that the spatial shooting frequency of team A is equal to the spatial shooting frequency of team B, against any other alternative. The statistic is $\hat{\mathrm{V}}=2 \mathrm{~N}[\mathrm{~h}(\mathrm{~A}, \mathrm{~B})+\mathrm{h}(\mathrm{A} \cup \mathrm{B})-\mathrm{h}(\mathrm{A})-\mathrm{h}(\mathrm{B})]$ that asymptotically follows a χ^{2} distribution and whose construction can be found in the Appendix section.

In order to help the reader to understand the statistical procedure we illustrate Kulldorff test with an easy example. Consider a 4×4 regular lattice. Assume that we have a team composed only by two players, player A and player B with the shots attempted distribution shown in Figure 1.
*** Figure 1 near hear ***

Figure1. Basic example of Kulldroff test

10	8	2	0
8	4	0	0
2	0	1	1
0	0	1	1

Player A

1	1	1	1
1	1	0	0
1	0	4	6
1	0	6	8

Plawer B

0.16	0.13	0.04	0.01
0.13	0.07	0.00	0.00
0.04	0.00	0.07	0.10
0.01	0.00	0.10	0.13

Team \%

Under this setting we have that $\mathrm{N}=70$ with $\mathrm{n}_{\mathrm{A}}=38$ and $\mathrm{n}_{\mathrm{B}}=32$. Then we can estimate the shooting probability of a player just by dividing the total number of shots at location s divided by N , for instance at location 1 we have that the shooting probability is $0.16=(10+1) / 70$ (see third column of Figure 1). Also under H_{0} the shooting probability of player A at any location is $\mathrm{p}_{\mathrm{A}}=38 / 70=0.54$ and of player B is $\mathrm{p}_{\mathrm{B}}=32 / 70=0.46$

Now assume that the window W under scrutiny is the shadow one. The under H_{0} the expected value of shots attempted by player A is $\mathrm{E}_{\mathrm{W}}=34 \cdot \mathrm{p}_{\mathrm{A}}=18.45$ while the real shot frequency is 30 . Therefore window W is a high frequency cluster for player A . On the other hand, under H_{0} the expected value of shots attempted by player B is $\mathrm{E}_{\mathrm{W}}=34 \cdot \mathrm{p}_{\mathrm{B}}=15.54$ while the real shot frequency is 4 and therefore window W is a low frequency cluster for player B. Kulldorff statistic scan all possible windows in the basketball court looking for the maximum difference between the expected shot frequency and the real one and afterwards obtains the p-value through Monte Carlo hypothesis testing.

For this example one can compute the entropies and the V-statistic values obtaining $h(A)=1.38, h(B)=1.31$, $h(A U B)=2.31, h(A, B)=0.69$ and $V=41.85$. Notice that, as expected, $\mathrm{V}=41.85$ rejects the null hypothesis of equal shooting distribution.

4. Results

In order to know the spatial pattern of shots attempted we have considered all the games played in the regular seasons $06-07 ; 07-08 ; 08-09$. A total of 3509 games with 563740 shots attempted.

Figure 2a shows the spatial pattern of shots attempted in the NBA. Figure $2 b$ shows the spatial pattern of shots attempted in LAL in the same three seasons. In deep blue colour are the locations with 0 shots changing to red colour as the frequency of shots increase.
*** Figure 2 near here ***

There exists one location with coordinates $(26,7)$ with the higher shots frequency, with a large difference with the remaining locations. This cell contains approximately the 26% of the shots attempted for the whole NBA teams and near of 30% for LAL. In addition, both maps show that the three point zones placed in the two sides of the court have high shot frequency. This is a logical finding because this three point zones are nearer the rim than the three point zones placed in front of the rim, because of the nonsymmetrical characteristic of the three point line. In a first sight, we may say that both maps show a similar pattern of shot locations. However, after applying V test, we detect significant differences between both maps (V:2627.5; df:1589; p-value:0.000). We may generally say that Lakers have been less oriented to the game into the paint that the aggregate NBA teams.

Figure 2. Shooting frequency of NBA and Lakers in the 3 seasons considered

Figure 2a: NBA

Figure 2b: Lakers

We are also interested in the spatial pattern of shots attempted of four of the most important players in LAL, Kobe Bryant (KB), Pau Gasol (PG), Derek Fisher (DF) and Lamar Odom (LO). As can be expected the spatial pattern is different among the 4 players. Again these differences are logical, because of the different characteristics of these players, their team role, and their player style. Figure 3 shows the shots attempted spatial pattern of these four players, and Table 2 shows the results of the V test.

Kobe Bryant is a total player from the offensive viewpoint. He shoots from all the zones, although he slightly prefer to be oriented about 60-75 degrees at the right of the rim. On the other hand, Pau Gasol plays as power-forward and as a center, and he shoots near the rim, inside the paint, and preferably oriented to the left. Dereck Fisher is specialized in three points shooting, especially from low angles at the right and the left of the rim, beyond the three-point line. And Lamar Odom, who is also a power-forward as Gasol, is a more versatile player, where the game outside the paint is very important, including shooting from the three point zone.

[^0]Figure 3: Shooting frequency of the four most important players of LAL

Figura 2a: KB

Figura 2c: DF

Figura 2b: PG

Figura 2d: LO

Table 2: Values of V test to detect global differences in spatial pattern of shooting attempts

		LAL	KB	PG	DF	LO
NBA	p-value	2627.05	2523.93	2010.77	1943.78	1802.93
	df	0.000	0.000	0.000	0.000	0.0001
	V	1589	1589	1589	1589	1589
LAL	p-value		2662.96	2015.17	1876.64	1696.24
	df	0.000	0.000	0.000	0.000	
	V	1344	1344	1344	1344	
KB	p-value		2019.81	1859.39	2088.97	
	df		0.000	0.0000	0.00	
	V			1199	1185	
PG	p-value			2158.18	1424.41	
	df			0.000	0.000	
	V			852	785	
DF	p-value				1798.22	
	df			0.000		
				901		

[^1]As we previously explained, analysts agree incorporations of Gasol and Fisher in the 2007/08 season were a key factor for the transformation of LAL. Therefore, we are going to analyse the previous and the next seasons in order to see if this hypothetical change has been reflected in the structure of shooting. Figure 4 show the high and low incidence clusters of LAL against NBA in the 2006/07 and 2008/09 seasons. Recall that high incidence clusters can be interpreted as the preferred shooting locations, where shots attempted of LAL are statistically above the expected shots of the whole NBA, and the opposite for the low incidence clusters.
*** Figure 4 near hear ***
Figure 4. Low and high incidence clusters for LAL against NBA

As Figure 4a show, in the 2006/07 season, Lakers has two low incidence clusters near of the rim (clusters 1 and 3). The second low incidence cluster is placed between the free-throw line and the three-point line, and the fourth cluster is sited in a large two-point zone in the middle left of the court. It seems that the game inside the paint is not the LAL's preferred location for shooting. However, in the 2008/09 season there is an important change in the spatial pattern of shots (Figure 4c), because clusters 2 and 4 of the Figure 4 a move toward the 3 point-line (clusters 3 and 4 of Figure 4 c), and the most important, cluster 2 moves to other distinct location, in the middle-right of the court opposite to cluster 4.

Regarding high incidence clusters, in the 2006/07 season, Lakers has two clusters in the middle angle of the three-point line (clusters 1 and 2). However, in the 2008/09 season there is another important change, because cluster 1 moves to inside the paint.

Considering that Pau Gasol usually plays in a zone located in the left side of the rim, and obviously inside the paint, changes in both low and high incidence clusters seem to reflect the importance of Gasol in LAL shooting pattern. Therefore, incorporation of Gasol has made Lakers a more powerful team inside the paint with respect to the aggregated NBA teams. Table 3 shows some statistical properties of clusters.
*** Table 3 near hear ***

Table 3. Statistics of low and high incidence clusters for LAL against NBA

Season	Cluster	N^{o}	Size	O_{W}	E_{W}	Ku	p -value
$2006 / 2007$	High	1	119	371	230.56	35.56	0.001
		2	107	331	202.34	34.93	0.001
		1	29	100	247.83	57.71	0.001
	Low	2	109	153	289.70	38.28	0.001
		3	98	185	308.16	28.33	0.001
		4	81	191	272.95	14.33	0.004
$2008 / 2009$		1	46	187	325.72	35.74	0.001
		High	2	132	198	310.06	23.76
	3	111	215	321.44	19.68	0.001	
		4	99	233	327.06	15.43	0.001
	Low	1	78	493	311.95	46.26	0.001
	2	60	151	92.31	15.89	0.002	

Size: Number of cells in the cluster; $O_{W}=$ Number of shots attempt observed in the cluster. $E_{W}=$ Expected shots in cluster W. Ku $=$ Kulldorff statistic value.

4.1 Lakers opponent game in the seasons 2006/2007 and 2008/2009.

As basketball is 50% attack and 50% defence, we also analyse opponent pattern of shot locations, in order to obtain a more complete draw of LAL transformation. Following the same methodology, we show results in Figure 5. Recall we are comparing the shooting pattern of Lakers opponents in the 2006/07 season with the shooting pattern of Lakers opponents in the 2008/09 season, i.e. after the incorporation of Gasol and Fisher. If we focus only on clusters changes, cluster 2 of low incidence in the 2006/07 moves to the zone where Gasol usually is placed in defence in the 2008/09 season. In addition, cluster 1 makes bigger. On the other hand, cluster 3 of high incidence (placed inside the paint) disappears. Again, globally these results seem to indicate the important contribution of Gasol to LAL, because opponents pattern of shots location have significantly changed in the main area of influence of Gasol game. Table 4 depicts some statistical properties of clusters.

[^2]Figure 5. Low and high incidence clusters for LAL' opponents

Table 4. Statistics of low and high incidence clusters for LAL' opponents

Season	Cluster	$\mathrm{N}^{\text {o }}$	Size	O_{w}	E_{W}	Ku	p-value
2006/2007	High	1	111	217	130.25	23.51	0.001
		2	39	111	53.56	22.48	0.001
		3	72	269	180.25	19.52	0.001
		4	27	100	60.49	10.73	0.054
	Low	1	34	87	209.76	47.07	0.001
		2	57	106	167.35	13.13	0.017
		3	6	0	11.82	11.16	0.078
2008/2009	High	1	76	418	312.56	16.64	0.002
		2	61	306	223.94	13.74	0.003
	Low	1	76	179	307.55	32.34	0.001
		2	87	183	294.41	24.89	0.001

Size: Number of cells in the cluster; $O_{W}=$ Number of shots attempt observed in the cluster. $E_{W}=$ Expected shots in cluster W. Ku $=$ Kulldorff statistic value.

The game of the most important Laker's players before and after the incorporation of Pau Gasol.

Beyond the influence of Gasol on the Lakers team, it is also interesting to study if there is any change in the game of specific LAL players. As commented previously, Bryant and Odom were the most prominent players in the pre-Gasol period. We thus analyse the spatial shooting patterns of these two players for the 2006/07 season and the games of the 2007/08 season played before the incorporation of Gasol. Results of the Kulldroff test and the graphic visualization of clusters are shown in Table 5 and Figure 6, respectively.
$* * *$ Table 5 near hear $* * *$
$* * *$ Figure 6 near hear $* * *$

Therefore, in the pre-Gasol period, Bryant prefers to shoot from the centre and right side of the court, whilst he shoots relatively less from the three-point zone located near the court corners. On the other hand, Odom prefers to shot surrounding the three-point zone in front of the rim instead of shooting from a nearer zone.

Figure 6. Low and high incidence clusters for KB and LO in the Pre-Gasol period.

Table 5. Statistics of low and high incidence clusters for KB and LO in the Pre-Gasol period.

Season	Cluster	N^{o}	Size	O_{w}	E_{W}	Ku	p -value
		1	74	244	126.22	45.99	0.001
	Alta	2	91	214	123.56	27.17	0.001
KB		3	137	207	125.42	22.19	0.001
		1	42	19	86.03	37.00	0.001
	Baja	2	46	34	92.14	23.51	0.001
		3	49	48	105.42	17.61	0.001
LO	Baja	1	11	0	15.15	12.21	0.028

Size: Number of cells in the cluster; $O_{W}=$ Number of shots attempt observed in the cluster; $E_{W}=$ Expected shots in cluster $W ; K u=$ Kulldorff statistic value.

Nevertheless, the most interesting analysis comes from the comparison of the pre-Gasol period with the Gasol period (from February of 2008 to the end of the 2009 season), i.e. whether changes have been produced in teammates of Gasol after his incorporation to the team. Results of the Kulldroff test and the graphic visualization of clusters are shown in Table 6 and Figure 7, respectively.

```
*** Table 6 near here ***
*** Figure 7 near here ***
```

As it can be viewed, significant changes are found. Regarding Bryant, the high incidence zone moves to the left of the court, being more oriented to the centre of the court than before, where there is very little difference from the left and the right angles (slightly prefer the right). With regard to Odom, he has translated the high incidence cluster inside the paint, so the incorporation of Gasol has made Odom to shoot nearer the rim.

Regarding Gasol, there are three high incidence clusters located inside the paint and in the $4-5$ meters zone. It seems clear that Gasol slightly prefer to shoot from the left side of the rim. Finally Fisher shows a shooting pattern consistent with his speciality, the three-point shoot. Figure 8 shows the clusters of Gasol and Fisher.

```
*** Figure 7 near here ***
*** Figure 8 near here \({ }^{\text {*** }}\)
*** Table 6 near here \({ }^{* * *}\)
```

Figure 7. Low and high incidence clusters for KB and LO in the Gasol period.

Figure 7a

Figure 7c

High incidence

Figure 7b

Figure 7d

Figure 8. Low and high incidence clusters for PG and DF in the Gasol period.

Figure 8a

High incidence

Figure 8b

Figure 8c

Figure 8d

Table 6. Statistics of low and high incidence clusters for KB, PG, DF and LO in the Gasol period.

Size: Number of cells in the cluster; $O_{W}=$ Number of shots attempt observed in the cluster; $E_{W}=$ Expected shots in cluster $W ; K u=$ Kulldorff statistic value.

5. Conclusions, limitations and further research

In this paper we have showed an application of spatial statistics to better understand the game of basketball. This methodology has been underutilized in sports research, and specifically in basketball. We have showed the interesting contribution of this methodological perspective in the case of the analysis of Lakers performance, and the transformation of this team from a medium-level NBA franchise into a champion team.

We have depicted how a spatial clustering technique, such as Kulldroff test, which is widely used in epidemiology, can be applied to analyse basketball data. This test detects low and high incidence clusters of shoots, and therefore to better characterizes the game of teams and individual players. In addition, we have also used a test based on entropy, the V-test, which serves to statistically compare shooting maps.

Combining both methods, we have found how the incorporation of two players: Dereck Fisher, and especially Pau Gasol, is associated with the change in the shooting pattern of Lakers. In addition, not only the offensive game has been affected, but the defensive game too, because shooting pattern of opponents have also changed. The figure of Pau Gasol emerges as the main responsible for these changes, because of the appearance of some clusters in the zone on the court where Gasol use to play. Lakers have intensified the game inside the paint after Gasol arrival, and have yielded opponents to shoot less than expected in a zone where Gasol use to defend. In addition, some particular players, as the superstar Kobe Bryant have changed his game, because, in the case of Bryant, high incidence clusters have moved some degrees to the left of the court.

All the information derived from this spatial analysis should complement other basic and advanced stats which can be freely found in specialized websites. These stats, based on box-scores and play-by-play data, together with spatial data, must serve to get a complete draw of the performance of teams and players. In fact, as Ballard (2009) explains, some teams such as for example Houston Rockets, use to inform its players about the opponent style of play (e.g. they inform the specialized defensive player Shane Battier about the plays of opponents stars). Using spatial statistics as the way we do in this research may provide very useful information for that purpose, because of the distinction among high and low incidence clusters of shoots.

This research can be extended to other teams by applying a similar approach. An example could be the nemesis of Lakers, the Boston Celtics, which made a similar transformation into de 2007/08 season, winning the NBA precisely against Lakers. Recall that Boston had a very poor .29 Win-Loss percentage (the second worst in its history) in the 2006/07 season. Then, this franchise signed two All-star players: Ray Allen and Kevin Garnett, and performance of the next season was absolutely the opposite; Celtics got a . 80 Win-Loss percentage (the third best in its history). In addition, comparisons of a team against other team or a group of similar teams can also be achieved. For example, it could be interesting to achieve a kind of benchmark analysis by comparing Lakers with a cluster of teams in the same "strategic group", in
order to avoid the noise caused by teams low performance teams, such as teams have not got play-offs. We made such analysis (it is available from authors upon request) and we found similar results when comparing to the whole NBA. Again a high incidence cluster appeared in the 2008/09 season in the zone where Gasol use to play.

The perspective we adopt in this research is one of the several ways to incorporate spatial analysis to the understanding of game. For example, other research may analyse shooting pattern of shoots made, in order to detect high and low incidence clusters of high-percentage and low-percentage locations. In addition, size of cells can be increased in order to obtain more data per location, but assuming the risk of being less exact in the assignment of shoots to spatial locations. However, simulations may be achieved in order to explore the consistence of the clusters obtained under different cells size.

Acknowledgements

We are in debt with Ryan J. Parker, from www.basketballgeeek.com, for freely sharing his database about shot location. We also thank www.basketball-reference.com. We also thanks XXXXXX to for their comments in previous drafts of this article.

References

Alferink, L. A., Critchfield, T. S., Hitt, J. L., \& Higgins, W. J. (2009). Generality of the matching law as a descriptor of shot selection in basketball. Journal of Applied Behavior Analysis, 42 (3), 595-608.

Arkes, J. (2010). Revisiting the Hot Hand Theory with free throw data in a multivariate framework. Journal of Quantitative Analysis in Sports, 6 (1), Article 2.

Ballard, C. (2009). The art of a beautiful game. Simon \& Shuster: New York
Balsdon, E., Fong, L., \& Thayer, M. (2007). Corruption in College basketball? Evidence of tanking in postseason conference tournaments. Journal of Sports economics, 8 (1), 19-38

Berri, D. J. (1999). Who is 'most valuable'? Measuring the player's production of wins in the National Basketball Association. Managerial and Decision Economics, 20, 411-427.
Berri, D. J. (2008). A simple measure of worker productivity in the National Basketball Association. in The Business of Sport, eds. Brad Humphreys and Dennis Howard, editors, 3 volumes, Westport, Conn.
Berri, D. J., \& Bradbury, J. C. (2010). Working in the land of metricians. Journal of Sports Economics. 11 (1), 29-47.

Berri, D. J., \& Eschker, E. (2005). Performance when it counts? The myth of the prime time performer in professional basketball. Journal of Economic Issues, 1, 798-807

Berri, D. J., \& Schmidt, M. B. (2002). Instrumental versus bounded rationality: a comparison of Major League Baseball and the National Basketball Association. Journal of Socio-Economics, 31, 191-214.
Berri, D. J., \& Schmidt, M. B. (2006),. On the road with the National Basketball Association's superstar externality. Journal of Sports Economics, 7 (4), 347-358.

Berri, D. J., Brook, S. L, Frick, B, Fenn, A. J., \& Vicente-Mayoral, R. (2005) The short supply of tall people: competitive imbalance and the National Basketball Association. Journal of Economic Issues, 39 (4), 1029-1041

Berri, D. J., Brook, S. L., \& Schmidt, M. B. (2007). Does One Simply Need to Score to Score? International Journal of Sport Finance, 2 (4), 190-205

Berry, S. M, Reese, C. S., \& Larkey, P. L. (1999) Bridging different eras in sports. Journal of the American Statistical Association, 94, 661-686.

Bodvarsson, O. B., \& Brastow, R. T. (1998). Do employers pay for consistent performance?: Evidence from the NBA. Economic Inquiry, 36 (1), 145-160.
Bourbousson, J., Sève, C., \& McGarry, T. (2010). Space-time coordination dynamics in basketball: Part 2. The interaction between the two teams. Journal of Sports Sciences, 28 (3), 349-58

Breshnahan, M. (2010, 31 January). Pau Gasol's trade to Lakers changed the NBA. Downloaded from http://articles.latimes.com/2010/jan/31/sports/la-sp-lakers-gasol31-2010jan31

Chen, H.-T., Tien, M.-C., Chen, Y.-W., Tsai, W.-J., \& Lee, S.-L. (2009). Physics-based ball tracking and 3D trajectory reconstruction with applications to shooting location estimation in basketball video. Journal of Visual Communication and Image Representation 20 (3), 204-216.

Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses. Annals of Mathematical Statistics 28, 181-187.

Esteller-Moré, A., \& Eres-García, M. (2002). A note on consistent players' valuation. Journal of Sports Economics, 3 (4), 354-360.
Fernández, J., Camerino, O., Anguera, M. T., \& Jonsson, G. K. (2009). Identifying and analyzing the construction and effectiveness of offensive plays in basketball by using systematic observation. Behavior Research Methods, 41, 719-730.

Fort, R., \& Maxcy, J. (2003). Competitive balance in sports leagues: An introduction. Journal of Sports Economics, 4 (2), 154-160.
Fort, R., Hoon-Lee, Y., \& Berri, D. J. (2008). Race, technical efficiency and retention. The case of NBA coaches. International Journal of Sport Finance, 3, 84-97.
Hickson, D. A., and Waller, L. A. (2003). Spatial analyses of basketball shot charts: An application to Michael Jordan's 2001-2002 NBA season, Technical Report, Department of Biostatistics, Emory University.
Hitt, J. L., Alferink, L. A., Critchfield, T. S., \& Wagman, J. B. (2007). Choice behavior expressed in elite sport competition: Predicting shot selection and game outcomes in college basketball. In L. A. Chiang (Ed.), Motivation of exercise and physical activity (pp.79-91). Hauppauge, NY: Nova Science.
Hollinger, J. (2005). Pro Basketball Forecast. Washington, D.C.: Potomac, Inc.
Hoon-Lee, Y., \& Berri, D. J. (2008). A re-examination of production functions and efficiency estimates for the National Basketball Association. Scottish Journal of Political Economy, 55 (1), 51-66.
Humphreys, B. R. (2000). Equal pay on the hardwood: the earnings gap between male and female NCAA. Division I Basketball coaches. Journal of Sports Economics, 1 (3) 299-307.
Humphreys, B. R. (2002). Alternative measures of competitive balance in sports leagues. Journal of Sports Economics, 3 (2), 133-148

Kleeman, R. (2009, 12 February). Pau Gasol Powers Runaway Lakers: How One Trade Changed the Title Race. Downloaded from http://bleacherreport.com/articles/123235-pau-gasol-powers-runaway-lakers-how-one-trade-changed-the-title-race

Kubatko, J.; Oliver, D., Pelton, K, \& Rosenbaum, D. T. (2007). A starting point for analyzing basketball statistics. Journal of Quantitative Analysis in Sports, 3 (3), Article 1.

Kulldorff M. (1997) A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 14811496.

Lehmann,E.L. (1986) Multivariate Linear Hypothesis. Testing statistical hypothesis. 2nd edn. John Wiley \& Sons, Inc, New York.
Lewis, M. M. (2003) Moneyball: The art of winning an unfair game. W.W. Norton \& Company Inc.
Manning, (2009, 14 December). Popovich: "Pau Gasol changed the landscape of basketball in the NBA" Downloaded from http://thelakersnation.com/blog/2009/12/14/popovich-pau-gasol-changed-the-landscape-of-basketball-in-the-nba/

Martínez, J. A. (2010). Una revisión de los sistemas de valoración de jugadores de baloncesto (II). Competiciones oficiales y ligas de fantasía. Revista Internacional de Derecho y Gestión del Deporte, 11, 48-68.

Mavridis, G., Tsamourtzis, E., Karipidis, A., \& Laios, A. (2009). The inside game in World Basketball. Comparison between European and NBA teams. International Journal of Performance Analysis of Sport, 9, 157-164.

Michaelides, M. (2010). A new test of compensating differences: Evidence on the importance of unobserved heterogeneity. Journal of Sport Economics 11 (5), 475-495.

Mulrooney, T. (2010). Mapping the landscape of collegiate wrestling using spatial statistics. Timothy J. Mulrooney, 29 Nov 2007. Web. 18 Nov 2010. http://myweb.wssu.edu/mulrooneyti/research.htm.

Oliver, D. (2004). Basketball on paper. Rules and tools for performance analysis. Washington, D. C.: Brassey's, INC.
Piette, J., Sathyanarayan, A., \& Kai, Z. (2010). Scoring and shooting abilities of NBA players. Journal of Quantitative Analysis in Sports, 6 (1), Article 1.
Price, J., \& Wolfers, J. (2010). Racial discrimination among NBA referees. Quarterly Journal of Economics 125 (4), 1859-1887

Reich, B. J., Hodges, J. S. Carlin, B. P., \& Reich, A. M. (2006). A spatial analysis of basketball shot chart data. The American Statistician, 60 (1), 3-12.
Rimler, M. S., Song, S., \& Yi, D. T. (2010). Estimating production efficiency in men's NCAA college basketball: A bayesian approach. Journal of Sports Economics, 11 (3), 287-315.
Romanowich, P., Bourret, J., \& Vollmer, T. R. (2007). Further analysis of the matching law to describe two- and three-point shot selection by professional basketball players. Journal of Applied Behavior Analysis, 40, 311-315.
Sánchez, J. M., Castellanos, P., \& Dopico, J. A. (2007). The winning production function: Empirical evidence from Spanish basketball. European Sport Management Quarterly, 7 (3), 283-300.

Sanderson, C. (2010, 13 July). Why Derek Fisher Is So Important To the L.A. Lakers' Success. Downloaded from http://bleacherreport.com/articles/419819-why-derek-fisher-is-so-important-to-the-lakers-success

Skinner, B. (2010). The price of anarchy in basketball. Journal of Quantitative Analysis in Sports, 6 (1), Article 3.

Tauer, J. M., Guenther, C. L., \& Rozek, C. (2009). Is there a home choke in decisive playoff basketball games?. Journal of Applied Sport Psychlogy, 21, 148-162.
Trininic, S., Dizdar, D., \& Luksic, E. (2002). Differences between winning and defeated top quality basketball teams in final tournaments of European club championship. Collegium Antropologicum, 26 (2), 521-531.

Vergin, R. C. (2000). Winning streaks in sports and the misperception of momentum. Journal of Sport Behavior 23, 181-197.

Vollmer, T. R., \& Bourret, J. (2000). An application of the matching law to evaluate the allocation of two and three-point shots by college basketball players. Journal of Applied Behavior Analysis, 33, 137150.

Winston, W. L. (2009). Mathletics. New Yersey: Princeton University Press
Zimmer, T., \& Kuethe, T. H. (2007). Testing for bias and manipulation in the National Basketball Association playoffs. Journal of Quantitative Analysis in Sports, 5 (3), Article 4.

Appendix

In order to give an answer to this question we will assume that the basketball court is a $w_{1} \times w_{2}$ regular lattice \mathfrak{L}. At each location $\mathrm{s} \in \mathfrak{L}$ we will denote by n_{s} the total number of shots attempted at location s done by player (resp. team) A. Similarly we denote by m_{s} the total number of shots attempted at location s done by player (resp. team) B. Denote by $N_{s}=n_{s}+m_{s}, n_{A}=\sum_{s \in \mathfrak{L}} n_{s}, m_{B}=\sum_{s \in \mathfrak{L}} m_{s}$ and $N=\sum_{s \in \mathfrak{L}} N_{s}$ the total number of shots attempted at location s and total number of shots attempted done by A, B and $A \cup B$ players (resp. teams) respectively. Then one could easily compute the relative frequency at location s and total shots attempted of A and B by $p_{s}=\frac{n_{s}}{N}, q_{s}=\frac{m_{s}}{N}, p_{A}=\frac{n_{A}}{N}$ and $q_{B}=\frac{m_{B}}{N}$ respectively. Hence the total shots attempted relative frequency at location s is $r_{s}=p_{s}+q_{s}$. Now under this setting we can define the total shots attempted entropy. This entropy is defined as the Shannon's entropy of the distribution of r_{s} as follows:

$$
h(A \cup B)=-\sum_{s \in \mathfrak{L}} r_{s} \ln \left(r_{s}\right)
$$

Total shots attempted entropy, $h(A \cup B)$, is the information contained in comparing the distribution of r among all locations in \mathcal{L}.

Similarly we have the A, B and A versus B shots attempted entropy

$$
\begin{aligned}
& h(A)=-\sum_{s \in \mathfrak{L}} p_{s} \ln \left(p_{s}\right) \\
& h(B)=-\sum_{s \in \mathfrak{L}} q_{s} \ln \left(q_{s}\right)
\end{aligned}
$$

and

$$
h(A, B)=-p_{A} \ln \left(p_{A}\right)-q_{B} \ln \left(q_{B}\right)
$$

respectively.
Once we have introduced the basic definitions and notation we will construct a statistical test to check whether the distribution of shots attempted by A is equal to the distribution of B . To this end we consider the following null hypothesis:

$$
\mathrm{H}_{0} \text { : The distribution of shots attempts is the same for LAL and Non-LAL }
$$

that is,

$$
H_{0}: q_{s}=\frac{m_{B}}{n_{A}} p_{s} \text { for all } \mathrm{s} \in \mathcal{L}
$$

Assume that the lattice \mathfrak{L} is of cardinality R. Notice that the variable number of shots attempted at location s is a Binomial random variable that can split in two binomial distributions $Y_{s}=B\left(N, p_{s}\right)$ and $Z_{s}=B\left(N, q_{s}\right)$ corresponding to A and B respectively.

Therefore the joint probability density function of the 2 R variables is
$p\left(Y_{1}=a_{1}, \ldots, Y_{R}=a_{R}, Z_{1}=a_{R+1}, \cdots, Z_{R}=a_{2 R}\right)=\frac{\left(a_{1}+\cdots+a_{2 R}\right)!}{a_{1}!\cdots a_{2 R}!} p_{1}^{a_{1}} \cdots p_{R}^{a_{R}} q_{1}^{a_{R+1}} \cdots q_{R}^{a_{2 R}}$
where $a_{1}+\cdots+a_{2 R}=N$ and its likelihood function is:
$L\left(p\left(Y_{1}=a_{1}, \ldots, Y_{R}=a_{R}, Z_{1}=a_{R+1}, \ldots, Z_{R}=a_{2 R}\right)\right)=\frac{N!}{n_{1}!\cdots n_{R}!m_{1}!\cdots m_{R}!} p_{1}^{n_{1}} \cdots p_{R}^{n_{R}} q_{1}^{m_{1}} \cdots q_{R}^{m_{R}}$

It is straightforward to see that the maximum likelihood estimators of p_{s}, q_{s} and r_{s} are $\hat{p}_{s}=\frac{n_{s}}{N}$, $\hat{q}_{s}=\frac{m_{s}}{N}$ and $\hat{r}_{s}=\frac{n_{s}+m_{s}}{N}$ respectively.

Then, under the null H_{0} we have that $H_{0}: q_{s}=\frac{m_{B}}{n_{A}} p_{s}$ and thus, $r_{s}=p_{s}+q_{s}=p_{s}+\frac{m_{B}}{n_{A}} p_{s}=\frac{N}{n_{A}} p_{s}$. Therefore, under the null H_{0}, the likelihood ratio statistic is (see Lehmann (1986))

$$
\lambda=\frac{\left(\frac{m_{B}}{n_{A}}\right)^{m_{\text {Tot }}}\left(\frac{n_{A}}{N}\right)^{N} r_{1}^{n_{1}+m_{1}} \cdots r_{R}^{n_{R}+m_{R}}}{\prod_{s \in \mathfrak{L}}\left(\frac{n_{s}}{N}\right)^{n_{s}} \prod_{s \in \mathfrak{L}}\left(\frac{m_{s}}{N}\right)^{m_{s}}}
$$

On the other hand $\mathrm{V}=-2 \ln (\lambda)$ asymptotically follows a Chi-squared distribution with $\mathrm{R}-1$ degrees of freedom (see for instance Lehmann (1986)). Hence, we obtain that the estimator \hat{V} of V is
$\hat{V}=-2 N\left[\frac{m_{B}}{N} \ln \left(\frac{m_{B}}{n_{A}}\right)+\ln \left(\frac{n_{A}}{N}\right)+\sum_{s \in \mathfrak{L}} \frac{n_{s}+m_{s}}{N} \ln \left(\frac{n_{s}+m_{s}}{N}\right)-\sum_{s \in \mathfrak{L}} \frac{n_{s}}{N} \ln \left(\frac{n_{s}}{N}\right)-\sum_{s \in \mathfrak{L}} \frac{m_{s}}{N} \ln \left(\frac{m_{s}}{N}\right)\right]=$
$=2 N[h(A, B)+h(A \cup B)-h(A)-h(B)]$
which is χ_{R-1}^{2} distributed.

[^0]: *** Figure 3 near here ${ }^{* * *}$
 *** Table 2 near here ***

[^1]: Note: Chi-square degrees of freedom have been adjusted deleting cells containing zeros.

[^2]: *** Figure 5 near hear ***

