Robust Topology Optimization of Structures using Kriging Models

Pascual Martí Montrull
Alberto Cordero Martínez
Mariano Victoria Nicolás

Universidad Politécnica de Cartagena
Departamento de Estructuras y Construcción
• Introduction.
• Robust topology optimization.
 • Formulation.
 • Algorithm for robust topology optimization.
• SIMP method.
• Uncertainty.
 • Quantification.
 • Propagation.
• Kriging Models.
• Examples.
• Conclusions.
• Structures used in real world should consider the effect of an uncertainty environment.

• Design under uncertainty:
 • Reliability-Based Design Optimization (RBDO). Minimum failure probability.
 • Robust Design Optimization (RDO). Solution insensitive to uncertainties.

• Robust Topology Optimization (RTO), is a combination between Robust Design Optimization (RDO) and Topology Optimization (TO).

• Some works about RTO under uncertainty in loading:
 • Chen et al. (2010).
 • Dunning and Kim (2011; 2013).
 • Zhao and Wang (2014-a; 2014-b).
Robust topology optimization: Formulation

\[\min. \quad C(u) \]

Subject to:
\[K(\rho)u(\rho) = f \]
\[V \leq V_{\text{max}} \]
\[0 \leq \rho \leq 1 \]

\[\min. \quad E[C(u, z)] \]

Subject to:
\[K(\rho, z)u(\rho, z) = f(z) \]
\[V(z) \leq V_{\text{max}} \]
\[0 \leq \rho \leq 1 \]

\(C(\cdot) \): compliance,
\(u \): displacement field,
\(K \): stiffness matrix,
\(f \): load vector,
\(\rho \): densities vector,
\(z \): uncertainty variables,
\(E[\cdot] \): expected value.
1 Deterministic.
2 Robust (Montecarlo).
3 Robust (Kriging + Montecarlo).
• Density based method (Bendsøe 1989; Rozvany et al. 1992)

\[0 \leq \rho_e \leq 1. \]

• Penalization for intermediate densities:

\[E_e(\rho_e) = E_{\text{min}} + (E_0 - E_{\text{min}})\rho_e^p. \]

\[E(x) \text{ Young modulus updated,} \]

\[E_0 \text{ Young modulus solid material,} \]

\[E_{\text{min}} \text{ Young modulus for void material,} \]

\[p \text{: penalization factor.} \]

• Density filter is used to avoid mesh dependent solution and checkerboard patterns.

• The topology optimization problem is solved by means of a standard optimality criteria method (Sigmund 2001).
• In this work are considered independent random variables in loading.
 • Magnitude, Direction, Position.
• A random variable is defined by a probability density function (pdf).

<table>
<thead>
<tr>
<th>pdf</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta</td>
<td>a: first shape parameter, b: second shape parameter</td>
</tr>
<tr>
<td>Chisquare</td>
<td>v: degrees of freedom</td>
</tr>
<tr>
<td>Exponential</td>
<td>μ: mean</td>
</tr>
<tr>
<td>Gamma</td>
<td>a: shape parameter, b: scale parameter</td>
</tr>
<tr>
<td>Inverse Gaussian</td>
<td>μ: scale parameter, λ: shape parameter</td>
</tr>
<tr>
<td>Longnormal</td>
<td>μ: log mean, σ: log standard deviation</td>
</tr>
<tr>
<td>Normal</td>
<td>μ: mean, σ: standard deviation</td>
</tr>
<tr>
<td>Poisson</td>
<td>λ: mean</td>
</tr>
<tr>
<td>Uniform</td>
<td>a: lower endpoint, b: upper endpoint</td>
</tr>
<tr>
<td>Weibull</td>
<td>a: scale parameter, b: shape parameter</td>
</tr>
</tbody>
</table>
• Performance expected value μ_f is defined as

$$\mu_f = E[C(u, z)] = \int C(u, z) \, \text{pdf}(z) \, dz$$

• This integral can be difficult to evaluate.

• Therefore approximate methods are used:
 • Simulation methods: Montecarlo (MC), Quasi-MC, Latin Hypercube,…
 • Expansion methods: collocation method, perturbation method,…
 • FORM, SORM.
 • Meta-models: response surface method, Kriging methods,…
 • Approximate integration: Univariate Dimension Reduction (UDR), Bivariate Dimension Reduction (BDR), …

• The Montecarlo (MC) method is used in this work.
Monte Carlo Methods

\[\mu_f = E[C(\rho, z)] \approx \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} C(\rho, z_i) \]

- The accuracy of estimate is good if \(N_{MC} \) is large (>10000).
- The computational cost is proportional to \(N_{MC} \).
• Kriging Models are interpolation models.
• They are used to surrogate a true response $f(x)$.
• Reduce the computational cost

\[
\hat{f}_l(x) = F(\beta_{il}, x) + Z_l(x) \quad l = 1, \ldots, q
\]

Regression model
\[
F(\beta_{il}, x) = \sum_{i=1}^{p} \beta_{il} f_i(x)
\]

Stochastic process
\[
E[z_i(w), z_l(x)] = \sigma^2 \mathcal{R}(\theta, w, x), \\
E[z_i(x)] = 0, \\
l = 1, \ldots, q
\]
• Design steps:

1. Latin Hypercube Design (size N_K)
 \[S = [s_1 \ s_2 \ldots \ s_{N_K}] \).

2. Evaluate structural response (displacement)
 \[u = [u_1 \ u_2 \ldots \ u_{N_K}] \).

3. Generate the Kriging Model
 \[\hat{u}(x) \approx f(S, u) \).

![Diagram](image-url)
• Elasticity module:
 • E_o/E_{min}: $1/10^{-4}$,
 • Poisson’s ratio: 0,3.

• Finite elements:
 • 4-node bilinear,
 • Unit sized elements.

• SIMP parameters:
 • Penalization factor: $p = 3$,
 • Filter radio: $r = 2$.

• Kriging Model
 • Regression function: first order polynomial.
 • Correlation function: exponential.
Example 1: Cantilever beam (1)

\[\frac{V_f}{V_o} = 0.3 \]

- \(f \): Punctual load.
- \(F \): Magnitude.
- \(\theta \): Direction.
- \(S_x \): Load position on x axis (0-1).
- \(S_y \): Load position on y axis (0-1).

Case 1: Uncertain load position.
Case 2: Uncertain load magnitude.
Case 3: Uncertain load direction.
Example 1: Cantilever beam (2) Uncertain load position

Montecarlo:
E[C] = 34.83

Montecarlo-Kriging:
E[C] = 35.27 (+1.2 %)

Case 1:

\[\frac{V_f}{V_o} = 0.3; \]
\[F : 1; \]
\[\theta : +90^\circ; \]
\[S_x : 1.0, S_y : \text{Normal (0.5, 0.17)}; \]
\[Nel_x : 30; Nel_y : 30; \]
\[N_{MC} : 10000; N_K : 10. \]
Example 1:
Cantilever beam (3) Uncertain load magnitude

Case 2:

\[\frac{V_f}{V_o} = 0.3; \]

\[F : \text{Normal} (1, 0.033); \]

\[\theta : +90^\circ; \]

\[S_x : 1.0, S_y : 0.5; \]

\[Nel_x : 30; Nel_y : 30; \]

\[N_{MC} : 10000; N_k : 6. \]

Montecarlo:

\[E[C] = 26.65 \]

Montecarlo-Kriging:

\[E[C] = 26.60 (-0.2 \%) \]
Example 1: Cantilever beam (4) Uncertain load direction

Montecarlo: $E[C] = 6.04$

Montecarlo-Kriging: $E[C] = 6.05 \text{ (-0.2 %)}$

Case 3:

$V_f/V_o = 0.3$; $F = 1$;
$\theta : \text{Normal (0\degree \ 5\degree)}$;
$S_x : 1.0, S_y : 0.5$;
$Nel_x : 30; Nel_y : 30$;
$N_{MC} : 10000; N_K : 6$.

Montecarlo - Kriging: $E[C] = 6.05$ (-0.2 %)
Example 2: Inverted T (1)

\begin{align*}
N_{MC} & = 10000, \\
N_K & = 6, \\
V_f/V_o & = 0.5.
\end{align*}

Uncertain loads \(F_1, F_2, \)
Normal \((\mu_F = 5.0, \sigma_F = 0.5), \)
Normal \((\mu_\theta = -90^\circ, \sigma_\theta = 14.3^\circ). \)

12672 bilinear elements,
2570 dof.
Example 2: Inverted T (2)

Deterministic design $C = 2786.91$

Robust design (MC), $E[C] = 3341.70$.
$t_i = 99388 \text{ s}$

Robust design (MCK), $E[C] = 3328.20 \ (-0.40 \%)$.
$t_i = 44 \text{ s} \ (-99.95 \%)$
Example 2: Inverted T (3)

Deterministic design

\[C = 2786.91 \]

Robust design with uncertain load

\[E[C] = 3376.82 \quad \text{SD}[C] = 701.74 \]

Deterministic design with uncertainty load

\[E[C] = 7657.80 \quad \text{SD}[C] = 6519.0 \]

E[·] : expected value
SD[·] : standard deviation
• A general methodology for topology optimization with uncertainty is presented in this work.

• Loading uncertainties are considered in magnitude, direction and position, like independent random variables.

• Montecarlo method is used to propagate the uncertainty to the response and a Kriging Model is used to reduce the computational cost.

• The proposed methodology (MCK) is accurate and very efficient. The computational cost is much lower than standard Montecarlo method.
This work has been supported in part by the Ministerio de Economía y Competitividad of Spain, via the research Project DPI2011-26394. Its support is greatly appreciated.
Thanks for your attention
Gracias por su atención
Obrigado pela atenção