Robust Optimal Design of structures via Kriging models

Engr. Jesús Martínez-Frutos
Prof. Dr. Pascual Martí-Montrull

Structural Optimization Group
http://www.upct.es/goe/
Technical University of Cartagena
jesus.martinez@upct.es

Congress on Numerical Methods in Engineering - CMNE 2011
14-17 June 2011, Coimbra, Portugal
Outline

1. Robust Optimal Design (ROD)
 Motivation
 Formulation
 Uncertainty quantification (UQ)

2. Kriging-based Robust Design Optimization
 Meta-modelling
 Kriging models
 Proposed approach

3. Numerical application
 Four-bar truss structure
 Kriging models
 Pareto frontier

4. Conclusion
1 Robust Optimal Design (ROD)
 - Motivation
 - Formulation
 - Uncertainty quantification (UQ)

2 Kriging-based Robust Design Optimization
 - Meta-modelling
 - Kriging models
 - Proposed approach

3 Numerical application
 - Four-bar truss structure
 - Kriging models
 - Pareto frontier

4 Conclusion
The optimization under uncertainty aims to obtain optimal designs less sensitive to the uncertainties inherent to the structural parameters.

Sources of uncertainty:
- Applied loads
- Spatial positions of joints
- Section properties
- Material properties
- Environmental conditions.
The optimization under uncertainty aims to obtain optimal designs less sensitive to the uncertainties inherent to the structural parameters.

Sources of uncertainty:

- Applied loads
- Spatial positions of joints
- Section properties
- Material properties
- Environmental conditions.
The optimization under uncertainty aims to obtain optimal designs less sensitive to the uncertainties inherent to the structural parameters.

Sources of uncertainty:
- Applied loads
- Spatial positions of joints
- Section properties
- Material properties
- Environmental conditions.
The optimization under uncertainty aims to obtain optimal designs less sensitive to the uncertainties inherent to the structural parameters.

Sources of uncertainty:
- Applied loads
- Spatial positions of joints
- Section properties
- Material properties
- Environmental conditions.
The optimization under uncertainty aims to obtain optimal designs less sensitive to the uncertainties inherent to the structural parameters.

Sources of uncertainty:
- Applied loads
- Spatial positions of joints
- Section properties
- Material properties
- Environmental conditions.
Deterministic Optimal Design (DOD)

$$\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \leq 0 \quad i = 1, \ldots, m_i \\
& \quad h_j(x) = 0 \quad j = 1, \ldots, m_j \\
& \quad x_{\text{lower}} \leq x \leq x_{\text{upper}}
\end{align*} \quad (1)$$

Robust Optimal Design (ROD)

$$\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad \{\mu_{f(x,z)}(x), \sigma_{f(x,z)}(x)\} \\
\text{s.t.} & \quad \mu_{g_i(x,z)}(x) + \beta_i \sigma_{g_i(x,z)}(x) \leq 0 \quad i = 1, \ldots, m_i \\
& \quad \sigma_{h_j(x,z)}(x) \leq \sigma^+_j \quad j = 1, \ldots, m_j \\
& \quad x_{\text{lower}} \leq x \leq x_{\text{upper}}
\end{align*} \quad (2)$$

$x \equiv$ vector of design variables, $z \equiv$ vector of random parameters
The kth statistical moments of the structural performance can be analytically expressed using a multi-dimensional integral (3).

$$E\{g^k(x)\} = \int_{\Omega} g^k(x) \cdot f_X(x) \cdot dx,$$

(3)

The main challenge is how to solve the multidimensional integration.

UQ (Monte-Carlo)
Outline

<table>
<thead>
<tr>
<th>1</th>
<th>Robust Optimal Design (ROD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Motivation</td>
</tr>
<tr>
<td></td>
<td>Formulation</td>
</tr>
<tr>
<td></td>
<td>Uncertainty quantification (UQ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Kriging-based Robust Design Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meta-modelling</td>
</tr>
<tr>
<td></td>
<td>Kriging models</td>
</tr>
<tr>
<td></td>
<td>Proposed approach</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Numerical application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Four-bar truss structure</td>
</tr>
<tr>
<td></td>
<td>Kriging models</td>
</tr>
<tr>
<td></td>
<td>Pareto frontier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Conclusion</th>
</tr>
</thead>
</table>
Meta-modelling

Consist of replacing a computationally expensive simulation model by a mathematical approximation which is much faster to evaluate.

1. To sample the function to be predicted.
2. To create a mathematical approximation using statistical considerations.
3. To evaluate the accuracy of the mathematical model.
Kriging models

Kriging models assume that the simulator can be approximated by a sample path of a Gaussian stochastic process $\mathcal{G}(\mathbf{x})$

Prior mean

$$E[\mathcal{G}(\mathbf{x})] = \mathbf{f}(\mathbf{x})^T \beta$$

Prior covariance function

$$\text{Cov}[\mathcal{G}(\mathbf{x}), \mathcal{G}(\mathbf{x}')] = \alpha^2 \exp\left(\sum_{i=1}^{n} - \frac{|x_i - x_i'|^s}{\phi_i}\right)$$

The parameters β, α^2 and ϕ are unknown a priori and are determined from the set of simulator responses

$$\hat{\mathcal{Y}}(\mathbf{x}) \equiv E[\mathcal{G}(\mathbf{x})|\mathcal{Y}] = \mathbf{f}(\mathbf{x})^T \hat{\beta} + \mathbf{r}(\mathbf{x})^T \mathbf{R}^{-1}(\mathbf{Y}^T - \mathbf{F}\hat{\beta})$$
Proposed approach

Flowchart

Step 1: global approximation
\(f(x, z) \)

- Generation of DoE
\(\Xi = \{x_1z_1, \ldots, x_mz_m \} \)

- Fit Kriging models in \(x, z \) space (maximize likelihood)

- Identify the best Kg model (Best \(PRESS_{MSE} \))

- Accurate models? (Predicted \(R^2 \))

- Accurate models?

Step 2: Uncertainty Quantification

- Uncertainty quantification assisted by Kriging models

- \(\tilde{\mu}_f(x, z) \)
- \(\tilde{\sigma}_f(x, z) \)
- \(\tilde{\beta}_f(x, z) \)
- \(\tilde{\gamma}_f(x, z) \)

Step 3: global approximation of statistical moments

- Fit Kriging models in \(x \) space (maximize likelihood)

- Identify the best Kg model (Best \(PRESS_{MSE} \))

- Accurate models? (Predicted \(R^2 \))

- Accurate models?

Step 4: optimization

- Optimization using MOEA (NSGA-II)

- Validation of Robust optimal solutions

- Accurate solutions?

End
1 Robust Optimal Design (ROD)
 - Motivation
 - Formulation
 - Uncertainty quantification (UQ)

2 Kriging-based Robust Design Optimization
 - Meta-modelling
 - Kriging models
 - Proposed approach

3 Numerical application
 - Four-bar truss structure
 - Kriging models
 - Pareto frontier

4 Conclusion
Problem definition

four-bar truss structure

(Dolsitis et al., 2004)

\[\begin{align*}
\min_{A_1, A_2} & \{ \tilde{\mu}(A_1, A_2, E_1, E_2)(A_1, A_2), \tilde{\sigma}(A_1, A_2, E_1, E_2)(A_1, A_2) \} \\
\text{s.t. } & w \leq 5 \\
& 0 \leq A_{1,2} \leq 2
\end{align*} \]

Design variables:
- \(A_1 \) (bars 1 and 3).
- \(A_2 \) (bars 2 and 4).

Random parameters:
- \(E_1 \sim \mathcal{N}(210, 21) \) (bars 1 and 3).
- \(E_2 \sim \mathcal{N}(100, 15) \) (bars 2 and 4).
Problem definition

four-bar truss structure

(Dolsitis et al., 2004)

\[
\begin{align*}
\min_{A_1, A_2} \{ & \tilde{\mu}(A_1, A_2, E_1, E_2)(A_1, A_2), \\
& \tilde{\sigma}(A_1, A_2, E_1, E_2)(A_1, A_2) \} \\
\text{s.t. } w & \leq 5 \\
0 & \leq A_{1,2} \leq 2
\end{align*}
\]

Design variables:

- A_1 (bars 1 and 3).
- A_2 (bars 2 and 4).

Random parameters:

- $E_1 \sim \mathcal{N}(210, 21)$ (bars 1 and 3).
- $E_2 \sim \mathcal{N}(100, 15)$ (bars 2 and 4).
The Kriging model was created based on 100 pieces of information obtained from an Optimized Latin Hypercube Sampling, which was improved using 100 additional infill samples.

True function (simulator) \(u(A_1, A_2, E_1, E_2) \)

Kriging model \(\tilde{u}(A_1, A_2, E_1, E_2) \)
The statistical moments were obtained by Monte Carlo simulation for a sample size of 10000.

\[\tilde{\mu}(A_1, A_2, E_1, E_2)(A_1, A_2) \]

\[\tilde{\sigma}(A_1, A_2, E_1, E_2)(A_1, A_2) \]
Multi-objective optimization
Robust Pareto fronts & feasible region

Robust Pareto frontier

\[\tilde{\mu}_u(A_1, A_2, E_1, E_2) (A_1, A_2) \]

\[\tilde{\sigma}_u(A_1, A_2, E_1, E_2) (A_1, A_2) \]
Multi-objective optimization

Accuracy

\[\min \sigma_u(x) \]

\[\min \mu_u(x) \]

<table>
<thead>
<tr>
<th>Kriging</th>
<th>Real</th>
<th>Error(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_u(x))</td>
<td>3.965E-3</td>
<td>3.967E-3</td>
</tr>
<tr>
<td>(\sigma_u(x))</td>
<td>1.721E-4</td>
<td>1.786E-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kriging</th>
<th>Real</th>
<th>Error(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_u(x))</td>
<td>3.843E-3</td>
<td>3.846E-3</td>
</tr>
<tr>
<td>(\sigma_u(x))</td>
<td>4.007E-4</td>
<td>3.961E-4</td>
</tr>
</tbody>
</table>
Robust Optimal Design (ROD)

Motivation
Formulation
Uncertainty quantification (UQ)

Kriging-based Robust Design Optimization

Meta-modelling
Kriging models
Proposed approach

Numerical application

Four-bar truss structure
Kriging models
Pareto frontier

Conclusion
Concluding remarks

Conclusions:

1. The proposed approach has shown to be efficient in low-dimensional problems that involved computationally demanding simulation models.

2. The global approximation allow us not only to speed up the optimization algorithm, but also to explore the design space, improving the formulation of the problem.

3. The Kriging models can be re-used in new optimization processes or computationally demanding applications.

Future works:

1. High-dimensional structural problems.
Thanks for your attention!

Congress on Numerical Methods in Engineering - CMNE 2011
14-17 June 2011, Coimbra, Portugal